
EXTERNAL VERIFICATION OF SCADA SYSTEM EMBEDDED
CONTROLLER FIRMWARE

THESIS

Lucille R. McMinn, Second Lieutenant, USAF

AFIT/GCS/ENG/12-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States

AFIT/GCS/ENG/12-02

EXTERNAL VERIFICATION OF SCADA SYSTEM EMBEDDED
CONTROLLER FIRMWARE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Insitute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Lucille R. McMinn, B.S.C.S.

Second Lieutenant, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/12-02

EXTERNAL VERIFICATION OF SCADA SYSTEM EMBEDDED
CONTROLLER FIRMWARE

Lucille R. McMinn, B.S.C.S.
Second Lieutenant, USAF

Approved:

S 'M."" I.:>-:--
Major nathan W. Butts, PhD (Chairman) Date

Date

s-vnar I z_
lins, PhD (Committee Member) Date

Abstract

Critical infrastructures such as oil and gas pipelines, the electric power grid, and

railways, rely on the proper operation of supervisory control and data acquisition

(SCADA) systems. Current SCADA systems, however, do not have sufficient tailored

electronic security solutions. Solutions available are developed primarily for information

technology systems. Indeed the toolkit for SCADA incident prevention and response is

unavailing as the operating parameters associated with SCADA systems are different from

information technology systems. The unique environment necessitates tailored solutions.

Consider the programmable logic controllers (PLCs) that directly connect to end physical

systems for control and monitoring of operating parameters – compromise of a PLC could

result in devastating physical consequences. Yet PLCs remain particularly vulnerable due

to a lack of firmware auditing capabilities.

This research presents a tool developed specifically for the SCADA environment to

verify PLC firmware. The tool captures serial data during firmware uploads and then

verifies against a known good firmware executable binary. Attempts to inject modified

and/or malicious firmware are identified by the tool. Additionally, the tool can replay and

analyze captured data by emulating a PLC during firmware upload. The emulation

capability enables verification of the firmware upload from an interface computer without

requiring modifications to or interactions with the operational SCADA system. The ability

to isolate the tool from production systems and verify the validity of firmware makes the

tool a viable application for SCADA incident response teams and security engineers.

iv

Dedicated to my mother, who taught me the value of science, logic, and critical thinking.

v

Acknowledgments

Many thanks to the Department of Homeland Security and ICS-CERT for

sponsorship of this research. Major Butts – thank you for being an inspirational educator

and officer, and providing me with incredible opportunities. To my family – thank you for

unyielding support and motivation.

Lucille R. McMinn

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgments . vi

List of Figures . x

List of Abbreviations . xiii

1 Introduction . 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Research Purpose and Goals . 2
1.4 Approach . 3
1.5 Research Contributions . 4
1.6 Assumptions and Limitations . 4
1.7 Organization . 4

2 Background . 5
2.1 SCADA System Overview . 5
2.2 Current SCADA Security Landscape . 7
2.3 Security Research . 9

2.3.1 Network Layer Security . 9
2.3.2 Software Data Integrity . 11

2.4 Embedded Device Security . 11
2.4.1 Hardware Level Attestation Implementations 12
2.4.2 Software Level Attestation Implementations 13
2.4.3 Embedded Device Configuration Management 15

2.5 Integrated Circuit Supply Chain Management 16
2.6 Industrial Control System Security Recommendations 18
2.7 Advanced Threat on SCADA Systems . 19

2.7.1 The Evolving Threat Trend . 20
2.8 Background Summary . 21

3 Methodology . 22
3.1 Problem Definition . 22

3.1.1 Goals and Hypothesis . 22

vii

3.1.2 Approach . 22
3.1.3 Baseline Analysis and Emulation 23

3.1.3.1 Baseline Capture and Analysis 23
3.1.3.2 Emulation . 24

3.1.4 Firmware Verification . 24
3.1.5 Assumptions and Limitations . 25

3.2 Environment . 27
3.3 Evaluation Technique . 28

3.3.1 Baseline Capture and Analysis Test Cases 28
3.3.2 Emulation Test Cases . 29
3.3.3 Firmware Verification Routine Test Cases 30

3.3.3.1 Control Test Cases . 30
3.3.3.2 Modification Test Cases 31

3.3.4 Evaluation of Firmware Modification 32
3.4 Methodology Summary . 32

4 Analysis and Results . 33
4.1 Tool Development . 33

4.1.1 Protocol Patterns . 33
4.1.1.1 Identifying Protocol Fields and Patterns 33

4.1.2 Data Emulation . 35
4.1.3 Firmware Verification . 37

4.2 Results . 38
4.2.1 Baseline Capture and Analysis Results and Emulation Results . . . 38
4.2.2 Firmware Modification . 39

4.3 Analysis . 39
4.3.1 MD5 Hash, Bitwise Check, and Tool Verification Routines 40

4.4 Discussion on Limitations . 40
4.4.1 Platform Limitations . 40
4.4.2 Development Limitations . 41

4.5 Analysis Summary . 42

5 Conclusions and Future Work . 43
5.1 Conclusions . 43
5.2 Impact . 44

5.2.1 Impact to Manufacturers . 45
5.2.2 Impact for Industry . 46
5.2.3 Impact for Security Professionals 46
5.2.4 Potential Implementations . 47
5.2.5 Potential Weaknesses . 47

5.3 Future Work . 47
5.3.1 Increased Testing . 47
5.3.2 Improved System Compatibility 48

viii

5.3.3 Increased Tool Security . 48
5.3.4 Potential to Test All Possible PLCs 48
5.3.5 Traffic Generation . 48
5.3.6 Alternative PLC Layer Security 49

5.4 Concluding Remarks . 49

Appendix A: Typical ControlFLASH Firmware Load Process 51

Appendix B: Pseudocode . 56

Appendix C: Tool Class Diagrams . 62

Appendix D: Tool Performing Test Cases . 68

Appendix E: Test Case Modifications . 73

Bibliography . 79

ix

List of Figures

Figure Page

2.1 A generic SCADA system setup . 6

2.2 PLC software layers . 7

2.3 Example non-traditional SCADA system inputs 9

3.1 Passive capture and baseline analysis setup. 23

3.2 Emulator setup. 25

4.1 Example packet fields. 34

4.2 Protocol and firmware bytes in a version 15 capture. 36

4.3 Subset of blocks created by the parsing and analysis process of a version 15

PLC data capture. 37

4.4 Example firmware capture verification cases. 38

4.5 Firmware verification routine results. 39

5.1 Device centric security. 45

A.1 Open ControlFLASH. 51

A.2 Select PLC type. 52

A.3 Select PLC from device network. 52

A.4 Enter PLC designator number. 53

A.5 Select firmware revision number. 53

A.6 Begin upload. 54

A.7 Uploading in progress. 54

A.8 Power cycle upon upload. 55

A.9 Successful Install. 55

B.1 Data Capture Algorithm . 56

B.2 Protocol Analysis Algorithm . 57

B.3 Protocol Analysis Block Grouping Algorithm 57

x

B.4 Protocol Analysis Mismatch Resolving Algorithm 58

B.5 Protocol Analysis Escape Byte Check Algorithm 58

B.6 PLC Emulator Algorithm . 59

B.7 PLC Emulator Packet Production Algorithm 59

B.8 Firmware Verification Algorithm . 60

B.9 Firmware Verification Mismatch Algorithm 61

C.1 Main Class and Helper Classes. 62

C.2 Passive Serial Capture Classes. 63

C.3 Serial Capture Analysis and Profile Creation Classes. 64

C.4 PLC Emulator Classes. 65

C.5 Captured Firmware Verification Classes. 66

C.6 Firmware Parse and Check Classes. 67

D.1 Tool function selection screen. 68

D.2 Version 15 capture verification test. 68

D.3 Version 16 capture verification test. 69

D.4 Byte added to firmware verification test. 69

D.5 Byte removed from firmware verification test. 70

D.6 Byte added to protocol data verification test. 70

D.7 Byte removed from protocol data verification test. 71

D.8 Byte modified in firmware verification test. 71

D.9 Byte modified in protocol data verification test. 72

E.1 Version 15 firmware screenshot. 73

E.2 Version 15 firmware screenshot. 74

E.3 Version 15 capture screenshot. 74

E.4 Version 16 capture screenshot. 75

E.5 Byte added to firmware data. 75

xi

E.6 Byte removed from firmware data. 76

E.7 Byte added to protocol data. 76

E.8 Byte removed from protocol data. 77

E.9 Byte modified in firmware data. 77

E.10 Byte modified in protocol data. 78

xii

List of Abbreviations

Abbreviation Page

SCADA supervisory control and data acquisition 1

USB universal serial bus . 1

PLC programmable logic controller . 2

HMI human machine interface . 5

RTU remote terminal unit . 5

ROM read only memory . 5

BIOS basic input/output system . 5

RAM random access memory . 6

I/O input/output . 7

IT information technology . 11

FPGA field programmable gate array . 12

SWATT software-based attestation for embedded devices 13

OMAP one-way memory attestation protocol for smart meters 15

IEEE Institute of Electrical and Electronics Engineers 15

IC integrated circuit . 16

DARPA Defense Advanced Research Projects Agency 16

IRIS Integrity and Reliability of Integrated Circuits 16

EEPROM electrically erasable programmable read-only memory 17

DOD Department of Defense . 17

DHS Department of Homeland Security . 18

US-CERT United States Computer Emergency Readiness Team 18

ICS-CERT Industrial Control Systems Cyber Emergency Response Team 18

NIST National Institute of Standards and Technology 18

xiii

ISA International Society for Automation 18

DOE Department of Energy . 18

FERC Federal Energy Regulatory Commission 18

NERC North American Electric Reliability Corporation 19

DLL dynamic linked library . 20

BCC block check character . 35

xiv

External Verification of SCADA System Embedded Controller Firmware

1 Introduction

1.1 Background

The nation’s critical infrastructure depends on secure, reliable supervisory control

and data acquisition (SCADA) systems, which provide critical control, communication,

and monitoring capabilities over geographically dispersed locations [1], [2]. As SCADA

systems increasingly interconnect via unsecured networks, security solutions have focused

on creating logical and physical boundaries between systems and the network layer [3],

[4], [5]. Even with network isolation, however, additional attack ingress points have

manifested in SCADA systems.

Consider, for example, the Stuxnet virus. Among the many implications associated

with Stuxnet, the attack methodology demonstrated the ability to exploit critical systems

through nontraditional inputs [6]. Indeed, the initial ingress point was not associated with

the compromise of a standard information technology system via a network access point

(e.g., compromise of firewall through the Internet). Instead, the virus propagated via a

physical medium, eventually gaining access to an internal trusted node in the SCADA

network. Although the attack vector by itself is not specifically unique - USB drives were

placed by a foreign intelligence agency to exfiltrate sensitive data once inserted into U.S.

Central Command systems [7] - it is the first documented case of a targeted attack against

a specific SCADA system that resulted in kinetic effects [6].

SCADA systems are comprised of interconnected nodes consisting of master

controlling systems, end devices, communication links and various support systems [8]. A

cyber attack on a SCADA system assumes that vulnerabilities stem from the ability of an

1

external actor to gain access to and communicate with nodes on the network. As a result,

today’s security perspective is to isolate and limit access points to the system from any

external network [5]. While it is true that the network vulnerabilities currently considered

are valid input vectors for an attack, they are not the only vectors that introduce untrusted

and unvalidated inputs into a trusted system.

1.2 Motivation

The current tool set for attack response and mitigation is inadequately tailored to

SCADA systems [9], [10]. Generally, the available resources are modified network-based

tools adapted to incorporate the SCADA environment (e.g., packet capture tools, general

operating system analysis and network-based intrusion detection systems). Although these

tools provide a level of protection and analysis in a broad sense, tailored security solutions

are needed to address the emerging threat specific to SCADA systems. Perhaps the most

pressing concern is verifying the proper operation of field devices, such as programmable

logic controllers (PLCs), which directly control and monitor the end physical systems.

These devices typically operate ‘below’ the network layer and have few security

mechanisms. As demonstrated by Stuxnet, unimpeded manipulation of these devices can

have direct physical consequences. Indeed, there are currently no viable tools readily

available to validate the proper operating parameters of PLC devices controlling the

nation’s critical infrastructure.

1.3 Research Purpose and Goals

This research examines a method for validating PLC firmware. Firmware, in the most

basic sense, is fixed microcode that provides the bridge between hardware and

higher-level programmable software on a device. An attacker that can gain access to and

manipulate firmware has full control over the functionality of the device and can mask

actions from detection.

2

The goal of this research is to develop a tool that validates PLC firmware and ensures

that any attempt to alter the firmware is detected. The tool is intended to capture a PLC

firmware load and identify any modifications from an established baseline to include data

insertion, deletion, and modification. The tool should not introduce additional input

vectors into the SCADA system. Additionally, an ideal implementation enables

assessment with no impact to the operational SCADA system.

1.4 Approach

The tool is designed for an environment consisting of an Allen-Bradley FlexLogix

5434 PLC and Rockwell Software’s RSLogix 5000 interface tool. The tool captures and

audits serial communication using the Allen-Bradley DF1 full duplex protocol set.

Once captured, the firmware is validated against a known good baseline using a

comparative analysis derived from observed firmware load characteristics. In the most

basic form, identifying modified firmware is best accomplished by comparing against a

known good firmware baseline. Note that simple hash comparison for firmware is not as

straightforward as checking for modified files in a traditional operating system. Indeed,

the requirement to capture and analyze the data during load, coupled with the comparison,

makes firmware validation nontrivial.

Note that no two firmware loads are precisely the same due to changing protocol

fields. Comparative analysis of captured data enables the tool to identify and account for

these differences while validating the firmware bytes are consistent with the baseline. The

altered firmware loads are evaluated using the tool’s firmware verification routine, MD5,

and bitwise check routines to demonstrate the ineffectiveness of MD5 and bitwise routines

at identifying modifications.

3

1.5 Research Contributions

This research serves to introduce a tool to detect the loading of malicious or altered

firmware to a PLC device. Application of the tool can assist incident response teams in

pinpointing malware access points, as well as security engineers in providing assurance in

the validity of PLC operations.

1.6 Assumptions and Limitations

Firmware verification is valid under the assumption that firmware modifications are

manifested during a firmware loading session. However, it may be possible for malware to

infect other components of a SCADA system. The tool requires a known good baseline to

successfully validate firmware captures. This research assumes a known good baseline for

comparison. Additionally, because tool evaluation is in a controlled environment, it is

assumed that test cases are indicative of similar classes of firmware modifications (e.g., a

one byte length increase is indicative of an n byte increase). Finally the variety of PLC

manufacturers, configurations, and capabilities is a limiting factor for developing a broad

spectrum tool. It is expected that further functionality can be added in future development

iterations.

1.7 Organization

The remaining thesis is organized as follows. Chapter 2 provides background

information, pertinent research, and literature review. Chapter 3 presents the research

methodology. Chapter 4 presents results and analysis. Chapter 5 discusses research

conclusions, impact, and future work.

4

2 Background

2.1 SCADA System Overview

Critical infrastructures such as oil and gas pipelines, the electric power grid, and

railways, rely on the proper operation of SCADA systems. SCADA systems support

various applications and may extend over thousands of miles. Operators remotely control

and monitor SCADA systems from centralized monitoring stations, typically through a

human machine interface (HMI). Field devices, such as are either PLCs or remote

terminal units (RTUs), automate physical system operation by implementing digital

control messages into actions (e.g., opening or closing breakers and valves, monitoring

alarm conditions, and collecting system and environment data from sensors).

Remote field devices communicate with master control devices though a hierarchical

communication paradigm. Master devices send direct messages requesting data or

specifying actions to remote field devices, which reply with generated response messages.

The master may be notified if the device detects an alarm condition. Figure 2.1 illustrates

a simple control system consisting of a master device and a field device. The master

device can send commands to control pumps or valves, or request sensor meter values.

The field device replies with appropriate responses.

A PLC contains a microprocessor and read-only memory (ROM) or flash memory for

storing firmware and control logic [5],[8]. A PLC typically has three software levels as

shown in Figure 2.2. Modifiable layers include the control program, the firmware, and in

some instances, the basic input/output system (BIOS). At the lowest level, the BIOS or

other hard coded firmware occupies a portion of read-only memory and provides basic

functionality. This routine executes when the PLC is powered on, initializing the PLC

state and loading the operating system [11], [12]. If the operating system, or firmware, has

not been installed and needs to be loaded, the BIOS handles this as well. Note that in

5

Field

Device

F

PT PT PT FT TT

Pump Station

Control Valve Sensor Meters Pipeline Valve

Mainline Pumps

`
`

`

Control / Master

Request Response

Figure 2.1: A generic SCADA system setup

many PLCs, the BIOS is not electronically modifiable. However in instances such as the

Siemens’ S7 modular embedded controllers which run embedded Windows XP, the BIOS

is reprogrammable [13].

The operating system, referred to as firmware, runs on top of the BIOS layer.

Firmware can range from simple proprietary software to high level processor demanding

software such as embedded Linux or Windows versions. The loaded firmware has the

ability to control random access memory (RAM), the runtime environment, sensors and

actuators, and serves as the interpreter for the user defined logic program meant to control

the SCADA system. Note that Allen-Bradley uses in-house created firmware for their

PLCs [14].

The control program represents the highest externally electronically modifiable level

and is typically a ladder logic or high level graphical or textual logic program [15]. In the

6

Control Program

Operating System/Firmware

BIOS

PLC Software Layers

Interface Computer

PLC

Figure 2.2: PLC software layers

case of the input/output (I/O) modules - built in I/O capabilities are not usually

reprogrammable, however some devices do allow I/O module updates to enable PLC

communication using new protocols. For scope simplification, this research focuses only

on the general PLC level and not any components that may have specific vulnerabilities.

Note that the terms PLC and RTU are often interchanged. Although similar in

functionality, RTUs are less advanced in terms of independent processing capability and

rely on remote monitoring and control [8]. This research focuses on PLCs that have

modifiable firmware and logic program layers.

2.2 Current SCADA Security Landscape

Current SCADA security focuses on traditional network security constructs.

Firewalls and intrusion detection or prevention systems are used to create a

defense-in-depth security architecture, and many SCADA system specific developments

focus on encryption for information security through added confidentiality [16], [17].

However, encrypted data also increases the difficulty of auditing communication data [8].

7

Additionally, SCADA security developments often require modifying or adding system

components, which can hinder real time performance [18], [19], [20], [21].

While network defense is critical to security, network based attacks may not be the

primary method of exploitation. Stuxnet infiltrated a non-networked environment via a

nontraditional vector – a USB [22]. Indeed, critical infrastructure is a high value target; an

advanced persistent threat will find an input vector to even the most secure system [23],

[24], [25]. Considering the various non-networked input vectors, security must be applied

beyond the network layer [15].

PLCs are typically monitored and interfaced via a remote human machine interface

[11]. The PLC controls SCADA system equipment and reports information about the site

conditions to the remote monitoring station. A PLC under the control of a malicious user

can produce devastating effects, as evidenced recently by Stuxnet and various historical

attacks [6] [26].

The PLC presents three main vectors for attack: hardware, firmware and

programming. Hardware security requires a trusted supply chain or methods to thoroughly

test the acquired end device. Hardware is the lowest layer of abstraction and, at some

level, must be trusted. Programming modifications alter PLC functionality and can be

manipulated easily with compromise of or access to the specific PLC management

software. Manipulation of PLC programming, however, is readily identifiable as PLC

programs are interpreted instead of compiled and cannot be masked from external PLC

inspection. When considering modifications to the PLC, firmware modification is the

most intrusive and least detectable vector; there are no readily available methods to easily

extract the firmware once loaded on a PLC [27], [28]. Exasperating the problem, as

demonstrated in Figure 2.3, are the number of potential input vectors that enable firmware

alteration (e.g., programming computers, SCADA control systems and access to the

8

`

Programming
Computer

PLC

F

PT PT PT FT TT

Pump Station

Control Valve Sensor Meters Pipeline Valve
Mainline Pumps

Supply
Chain

Firmware

Internet

Technician

`
`

`

Control / Master

Drivers &
UpdatesPLC

Program

Corporate
LAN

Internet

Figure 2.3: Example non-traditional SCADA system inputs

firmware update software). Indeed, any access point to the PLC or access to the firmware

code to be uploaded provides an avenue to alter the end device’s firmware.

2.3 Security Research

2.3.1 Network Layer Security. To validate the need for increased protocol security,

a series of possible attacks against the MODBUS serial and TCP protocols as well as

against the DNP3 protocol were identified by Huitsing et al. and East et al. [29], [30].

The identified effects range from intermittent disruptions to loss of awareness and control

of the system. They analyzed attacks from the standpoint of interception, interruption,

modification, and fabrication attack instances against the master station, end devices, or

the communication network.

9

The majority of security developments redesign SCADA networks to add a layer of

encryption. Fovino et al. suggests modifying SCADA architecture to make

communication adhere to a signature. Additionally, they describe an architecture that has

multiple validation ‘filtering units’ for each of the end devices such that a mathematical

majority of the units per device must be corrupted to send a malicious packet [31]. The

implementation mitigates unauthorized commands, man-in-the-middle attacks, replay

attacks, and malicious packet attacks. However, this architecture must incorporate

additional cryptography supporting devices. Another secure cryptographic-based

environment is described by Pal et al. The authors note that the limited computation

capacity, memory capacity, bandwidth, and real-time demands of a SCADA network

environment pose significant technical challenges when implementing cryptography

because key storage, encryption, and decryption require non-trivial processing time. They

propose multiple architectures, each with individual advantages, of key storage and

distribution among a network by a master unit [17].

Intrusion detection systems are proposed by both Morris and Pavurapu, and Wei Gao

et al. [21], [25]. Morris and Pavurapu propose a bump-in-the-wire style device retrofitted

into a network that monitors and handles encryption, analysis, and logging of all packets.

This device would prevent response injection, command injection, and denial of service

attacks. Wei Gao et al. alternatively researched adding network security without the

complications of encryption [25]. Their research provides specific details on an intrusion

detection system developed from a neural network algorithm with statistics on the ability

to correctly detect malicious traffic. This research focuses on developing a suitable

intrusion detection system, and not on adding a layer of encryption.

Research by Mander et al. and Gilchrist examines building security into the DNP3

protocol [16], [32]. Mander et al. proposes adding object based security rules based on

packet fields such as function code and data field values to prevent modifications to end

10

device configuration settings; non-conforming packets are dropped. Gilchrist presents

adding a secure authentication standard to the DNP3 protocol using keyed-hash message

authentication codes. The development was implemented by the DNP3 IEEE 1815

standard [33]. The specification applies only to how the authentication is negotiated, and

not how keys are stored or distributed – the standard leaves encryption details to the user’s

discretion. The authors imply that encryption is intended to be used with the standard,

though the protocol standards do not require encryption for functionality.

Adding layers of network security to SCADA networks proactively mitigates the

threat of external unauthorized access; however, it is important to note that these methods

only protect the perimeter of a network. End devices such as PLCs typically are not

capable of deploying their own information technology (IT) protection methods [8].

2.3.2 Software Data Integrity. Software level data integrity checking is pertinent

to analyzing PLC software integrity. Data integrity checks are performed through a variety

of hashing functions [34]. MD5 is a commonly used hash function to check if a file has

been modified [35]. A known good MD5 is compared against the MD5 of the data in

question. Equivalent results provide a measure of integrity that the data remains

unmodified.

2.4 Embedded Device Security

Current SCADA systems primarily use commercially available operating systems for

the HMI system. Vulnerabilities in these systems are openly attainable, allowing an

attacker to gain expertise on a platform without internal access to SCADA system

components [36]. PLCs however, are more widespread with each manufacturer and model

typically implementing different firmware. Because PLCs are in effect a microprocessor

device, an analysis of the current research on embedded devices is important to garner

insight to applicable security solutions.

11

Embedded device security focuses on controlling the onboard memory of a device

and attesting to its validity. This is applicable to a typical PLC design because the PLC

firmware and logic programs are stored in ROM or flash memory and RAM respectively.

Assuring that a device’s static configuration or its dynamic execution state is secure

increases confidence that a device has not been compromised [18]. Current research on

embedded device security involves attestation that the device state has not been changed.

Research has been done on secure protocol development, software level attestation,

hardware level attestation, and a combination of these designs. Attestation can be

accomplished by integrating a hardware device as an external verifier, or on the software

level where a trusted portion of code exists to check the state of the device. Additionally,

research has been accomplished for remote schemas to allow verification without physical

presence over a network. Remote attestation requires a secure communication protocol. A

discussion of embedded device security research follows.

2.4.1 Hardware Level Attestation Implementations. Implementations from

research executed by Basile et al., Feller et al., and Khan et al. add hardware level

components to externally verify the device state [18], [37], [38].

Research by Basile et al. focuses on detecting if executed code has been modified by

utilizing an field programmable gate array (FPGA) to build a secure architecture. The

authors’ goal is to engineer a setup that makes it difficult to create a successful real world

attack. Various network and environmental attack scenarios are addressed. However, the

authors do note that this method of protection is not intended for high value targets - a

motivated attacker with resources could still compromise an FPGA.

TinyTPM by Feller et al. was presented to port trusted computing to FPGA devices

by adding a validation module that consumed few resources in static logic [37]. TinyTPM

performs bootstrapping functions in order to verify the system state before any dynamic

logic execution can occur. The module uses cryptography but consumes fewer resources

12

than predecessors’ Trusted Platform Module implementations in order to add security.

Khan et al. presents another verification method for embedded systems utilizing an

external FPGA to store a hash and to check memory on device reset [38]. If the computed

hash matches the stored hash during the boot process, then the power up continues to

allow the device to run, if they do not then the device stays in reset mode. This method

adds some delay at boot time; however, it does not affect the system’s functionality after

verification occurs. This could be beneficial for PLC security; however, changes would be

needed to implement boot time checking in a critical process environment as a no-start

situation is unacceptable and may create a denial of service situation.

2.4.2 Software Level Attestation Implementations. Adding hardware devices is not

always feasible, and can be expensive. Software based attestation seeks to discover that an

environment is safe by using provably secure methods.

Software-based attestation for embedded devices (SWATT) is one of the earliest

projects that presents the idea of using a purely software based external verifier [39].

SWATT acts as in intermediate between the device and external actors communicating

with the device. A challenge-response protocol is used to only allow validated devices to

communicate. The technique is similar to secure bootstrapping; however, SWATT is

unique because it does not require additional hardware to externally verify the system was

in a secure state. Note that complete knowledge of the hardware is required for SWATT to

be implemented successfully. The verification process is alleged secure because any

changes to the checking routine would cause a measurable time delay. However, one of

the flaws with SWATT is the assumption that the device is in a trusted environment. The

authors note that because of the untrusted environment, any integrity checking functions

stored on the unit could be modified by an attacker, making them insecure as well.

Igure et al. present modern improvements on general software based attestation [40].

Though not specific to embedded devices, the paper discusses ensuring the system is in a

13

secure state by allowing only the attestation process to be active, and then by scanning

memory to verify this assumption. The verification process relies on the idea that

computation has access to all free RAM, and if less than the correct amount is free, a

noticeable delay will occur, indicating the presence of malware. When executing the

validation routine, all processes should be swapped out, including the kernel, to maximize

free RAM. The validation is then run by a monolith kernel. If less than the anticipated

amount of RAM is free, then secondary memory must be used. The security of this

method is guaranteed as long as the assumption holds that RAM is faster to access than

secondary memory, which is a more secure method than just pure software validation

alone.

A more thorough but computationally demanding approach is taken by AbuHmed et

al. The authors claim that attesting a devices entire memory space is the most secure as it

does not allow the attacker to save the original memory in a different location [41]. Any

additional memory can be filled with incompressible noise so that an attacker cannot

compress data in unused memory to free memory for malicious code additions.

Providing firmware updates remotely, or over the air, is another problem in memory

attestation. Updating every PLC directly is infeasible in systems with abundant or difficult

to reach controllers. Nilsson et al. presents a security framework for secure firmware

updates by connecting to a trusted portal and downloading updates using a secure protocol

[42]. The firmware is verified by using hardware virtualization and running two systems -

one system is the embedded controller system and the other is the verification system. This

allows self verification of updates remotely. The secure protocol is a unique development

to increase secure communication. Instead of using a trusted remote verifier as with

SWATT, Nilsson et al. seeks to use virtualization to separate a trusted microkernel and an

untrusted embedded operating system. The downloaded binary can be verified before it is

flashed and the secure protocol protects against third party modifications from the trusted

14

sender to the receiver. This schema can verify correct downloads and successful flashing

for firmware updates, however, it is still an incomplete solution to PLC firmware security

because it does not account for modified firmware sent from a trusted source.

Research for secure remote memory attestation was accomplished by Kyungsub et al.

[20]. They designed a one-way memory attestation protocol for smart meters (OMAP).

OMAP utilizes a random memory traversal checksum to protect against local attacks and

forwards the checksum to a utility to verify if the checksum corresponds to unmodified

memory. Modifications are detected through a random memory traversal checksum

computation. This implementation relies on the memory verification routine to be secure.

The research by Ce Meng et al. notes with heterogeneous components in a system, the

overall trust of a system depends on trusting its components [43]. They discuss attesting to

the building process in addition to remote attestation methods.

The limitation with purely software based attestation is that depending on the

knowledge of the attacker, the firmware in an embedded device may be completely

reprogrammed yet imitate a good system. The validation methods add time and

processing overhead, which may degrade real time constrained systems or may be

infeasible for systems with limited memory or processing capability. Hardware security

solutions require system compatibility and can limit device functionality. Currently

operating critical infrastructure systems would require retroactive installation to include

hardware modifications. While attestations on both levels afford improvements for general

embedded devices, neither is tailored to provide the high level of verification necessary for

critical infrastructure systems.

2.4.3 Embedded Device Configuration Management. Applying security

retroactively is inadequate for a mature security posture. In addition to adding device

security, controlling device updates and modifications are imperative for security

maintenance. The Institute of Electrical and Electronics Engineers (IEEE) published a

15

best practices guide for firmware control on microprocessors [44]. IEEE suggests that

microprocessors should have strict configuration management. Every update should be

tested before it is implemented to ensure that the current functionality will not be

impacted, and the previous version should always be backed up in case of malfunction.

Firmware should only be updated if it is required for functionality. However, the guide

does not discuss vectors that malware might use to compromise firmware or an embedded

device, or how to mitigate threats.

2.5 Integrated Circuit Supply Chain Management

Systems that utilize integrated circuit (IC) components must make the assumption

that the hardware device operates as intended. Regardless of how robust a security system

is, if it is running on insecure hardware, then its trustworthiness is undermined. Even with

extensive testing, it is infeasible to check every layer on every chip for correct

functionality. Thus, trusting an IC extends trust to every point along the supply chain.

Counterfeit parts are an industry issue, highlighting the feasibility for compromised parts

to be integrated into a system [28]. Legacy systems are particularly susceptible to

compromise as replacement parts are often obsolete.

Supply chain management is critical to mitigating risks in embedded devices before

they reach the end system. Since all technology relies on trustworthy hardware, significant

research has been done, as well as government programs put in place, to efficiently detect

and prevent hardware modification. The Defense Advanced Research Projects Agency

(DARPA) conducted the “TRUST in IC’s” Effort in 2007, a three year initiative to develop

integrated circuits compromise detection methods [45], [46]. DARPA continued this

research in 2010 with the Integrity and Reliability of Integrated Circuits (IRIS) initiative

to determine if an IC has been modified in a malicious manner [27].

Supply chain attacks can be grouped into three general categories - circuitry

modification, programmable hardware attack, or firmware attack [47]. Circuit

16

modification deals with altering the physical components of an IC. An attacker in the

supply chain can also reprogram hardware through electrically erasable programmable

read-only memory (EEPROM).

Firmware, which is an abstraction above programmable hardware, can also be

modified to change device functionality. Once a device has been modified, it is difficult to

detect modifications in a nondestructive manner. Exploits can be injected during design,

production, distribution, or maintenance phases of an IC’s lifecycle. Design phase exploits

are especially subversive because the malicious logic is designed into the chip without any

need for physical interception and modification.

There exist documented cases of ‘kill switches’ built into microprocessors to disable

functionality [48]. Analyzing IC layers to verify the absence of malicious logic is difficult

and most methods destroy the IC in the process. The Department of Defense (DOD) has

taken measures to increase trust in hardware by validating American commercial plants as

trusted IC foundries, however this does not guarantee a trusted product. Additionally,

faults can be engineered such that ICs operate normally, but then fail significantly before

the predicted lifetime.

Hardware level changes introduce myriad attacks, including timed attacks and

disabling encryption security. Furthermore, ICs can be modified even after they have been

manufactured. While this requires significant resources and blueprint knowledge, the

possibility is not unreasonable for a well funded and motivated attacker [48]. Solutions

that do not involve IC deconstruction utilize side channel analysis. Side channel analysis

operates under the assumption that inserting a trojan on the hardware level will degrade

chip performance or otherwise alter functionality in an observable manner. Hardware

trojan detection methods are not standardized and benchmarking has only been recently

introduced. Even with detection methods, not all hardware can be thoroughly checked.

17

Commercial off-the-shelf systems and legacy systems continue to be a difficult problem,

especially considering the global market for IC components [49].

Hardware threats undermine software security as software security can be bypassed

by hardware. Integrated circuits are inherently complex. Malicious logic detection in

hardware is difficult, especially for logic or time activated trojans which lay dormant until

a logic condition is occurs [50].

2.6 Industrial Control System Security Recommendations

In 2009 the Department of Homeland Security (DHS) published the National

Infrastructure Protection Plan [2]. The Government Accountability Office also published

testimony on the cyber threat to critical infrastructure [9], [24]. The DHS established the

United States Computer Emergency Readiness Team (US-CERT) to respond to cyber

incidents, including those in industrial control systems (ICS-CERT).

ICS-CERT provides many standards and best practices for security industrial

automation systems, as well as a cyber security evaluation tool to help increase

organizations’ cyber security posture [51]. ICS-CERT also publishes vulnerabilities found

in industrial control system equipment. They work with other agencies, including the

National Institute of Standards and Technology (NIST), International Society for

Automation (ISA), Centre for the Protection of National Infrastructure, Department of

Energy (DOE), the Federal Energy Regulatory Commission (FERC), and the national

laboratories to serve as a centralized resource for industrial control cyber security policy.

ICS-CERT presents detailed instructions on implementing system security.

Establishing a segmented network with firewalls and demilitarized zones, applying

configuration management, updating systems, adding authentication, training personnel in

cyber security, conducting risk assessment, securing wireless connections, using

encryption, limiting remote connections, using intrusion detection and prevention, and

18

adhering to security standards encompass the general areas ICS-CERT publishes

documentation on, accessible on their website [10].

NIST published a guide for SCADA system security [5]. NIST recommends

restricting physical and logical access to the network, protecting individual SCADA

components, and implementing redundancy. Additional recommendations are

implementing a defense in depth strategy that involves lifecycle security on the system,

adding layered network protection, employing encryption where possible, testing before

changing the system, and utilizing logging and monitoring to track system activity.

The North American Electric Reliability Corporation (NERC) published a series of

documents addressing cyber security and reliability standards for critical infrastructure

cyber security [52]. Their standards focus on creating a cyber perimeter with defense in

depth measures such as access controls, authentication, encryption, firewalls, logging, and

intrusion detection systems [53], [54]. The industry cyber security standards published by

these organizations focus on network security and access control. While these

recommendations increase industrial control system security, they may not provide

comprehensive security. Considering the current threat trend, vectors still exist to allow

malicious input into the system.

2.7 Advanced Threat on SCADA Systems

According to a DARPA report by Collins, the United States has to assume

adversaries are nation states with motivation, talent, time, and opportunity to do

significant harm to the United States [46]. Hostile actors may seek to inflict economic or

physical damage by attacking critical infrastructure networks. Possible attacks on a

SCADA system include denial of service, eavesdropping, man in the middle, or hijacking

a system through various infection methods such as a worm, virus, or trojan.

Malware falls into four generalized areas: malware that consumes resources,

malware that degrades a system based on a trigger condition, malware that allows remote

19

access, and malware that exfiltrates sensitive data [8]. Resource consumption, particularly

on a resource sensitive SCADA network, degrades communications and uses bandwidth

that the system requires to function properly. Trojans or timed attack malware propagate

to a computer and then execute certain malicious logic to harm that computer’s

functionality, degrading SCADA system performance as well. Remote access malware,

such as a rootkit, hides malicious logic at the kernel level in a system and provides an

attacker to exercise with a back door entry point. This allows an attacker complete control

over the computer. Exfiltration provides an attacker the knowledge necessary to engineer a

targeted attack [8].

2.7.1 The Evolving Threat Trend. The threat trend has become increasingly

targeted over recent years. Initially, targeted attacks originated from disgruntled insiders;

however, this is no longer the case. Recent attacks targeting U.S. Government such as the

exfiltration of Joint Strike Fighter data in April 2009, and the keylogger on remotely

piloted vehicle control stations at Creech Air Force Base in September 2011 demonstrate

the evolution of malware against high value targets [23], [55].

Stuxnet is a compelling example of the insufficiency of critical infrastructure security.

Discovered in June 2010, Stuxnet infected a system not connected to the public network

via a USB exploit. The virus analyzed the computer, only executing its payload if the

system met various requirements. Stuxnet required a target running the Siemens’

SIMATIC STEP 7 software with specific PLC CPU types and with specific numeric

values present in the system data blocks. Once in place on the target system, Stuxnet

modified the dynamic linked library (DLL) which controlled communication from the

STEP 7 software to the PLC.

The PLC program was modified to include a malicious function block, and the

modified DLL controlled the program’s function block locate, read, and write capabilities.

20

The DLL modification could modify sent or received data, hiding the additional malicious

function block from system operators [6], [22].

According to Symantec, developers of Stuxnet had extensive prerequisite knowledge

of the target system [6]. However, the lack of overall system protection, input validation,

and secondary fail safes enabled Stuxnet to infect approximately 100,000 hosts, with over

60% of hosts located in Iran, which resulted in physical damage. The future threat will

likely capitalize on Stuxnet’s innovations by both targeting specific systems and by using

extensive intelligence to develop malware to subversively achieve a kinetic goal. Network

security aimed to provide defense against hackers and general malware will not provide

sufficient protection against attacks similar to Stuxnet.

2.8 Background Summary

Recent SCADA security research aims to mitigate cyber vulnerabilities through

system architecture modifications or additions. Security researchers recommend adding

encryption or attestation devices to protect memory from potential modifications.

Standards and best practices recommend implementing traditional IT security solutions.

Modifying field devices or adding devices may be detrimental to system performance and

may not be feasible for all systems. Network security may not provide necessary

protection against non-networked vectors similar to Stuxnet. Potential improvements upon

current SCADA cyber security shortcomings are efforts that do not affect system operation

and works with a system without modifications or additions to provide protection beyond

the network layer.

21

3 Methodology

The ability to verify that a source device (i.e., interface computer) is sending

unmodified firmware to a PLC requires three primary features: (i) the ability to capture

communication data, (ii) the ability to analyze captured data and (iii) the ability to

determine the validity of the firmware. This chapter describes the methodology for

evaluating the effectiveness of the firmware validation tool for these three features.

3.1 Problem Definition

3.1.1 Goals and Hypothesis. Given a known good baseline, the firmware

verification tool is expected to identify firmware modifications. This research postulates

that MD5 hashing and bitwise check routines are insufficient because they do not consider

stateful protocol communication fields. The three methods (i.e., MD5 hash, bitwise check,

and the tool’s verification routine) are examined by comparing a baseline firmware load

against subsequent modified loads.

The primary goals of this research include: effectively capturing and analyzing

firmware upload communications, effectively emulating a PLC to capture firmware loads

independent of a PLC, and verifying firmware captures against known good baselines.

Capturing, analyzing, and verifying firmware communication are the necessary functions

for the firmware verification tool. The emulator functionality provides an implementation

capability with operational feasibility.

3.1.2 Approach. Effective data capture and analysis is demonstrated by capturing

and analyzing data using multiple firmware revisions. Each analysis produces a known

good baseline. Emulating a PLC to independently capture firmware loads is demonstrated

by mirroring each possible firmware version. Verifying firmware captures against known

good baselines is demonstrated by executing the verification routine against representative

22

firmware modification test cases. Analysis of the firmware verification tool’s performance

compared to the MD5 hash and bitwise check routines on representative test cases

demonstrates the tool’s relative ability to perform adequte firmware verification.

3.1.3 Baseline Analysis and Emulation. Each firmware upload is executed in an

identical manner. Keeping the loading routine constant for both the tool and the interface

computer reduces the possibility for variations in the data transfer and allows the captured

data to be representative of only the firmware loading process.

3.1.3.1 Baseline Capture and Analysis. During the initial capture and

baseline phase, a firmware load from the interface computer to the PLC is captured.

Figure 3.1 illustrates the passive capture mode setup. The verification tool passively

receives all transferred data. The captured data is then separated into data sent from the

firmware interface computer and reply data sent from the PLC. Note that data from the

interface computer contains the uploaded firmware bytes.

Passive Capture Mode

Interface Computer

Communication and Firmware Data

PLC

Passive

Tap

Baseline Analysis

Known Good

Firmware

Capture

Format

Verification

Tool

Figure 3.1: Passive capture and baseline analysis setup.

23

Baseline creation requires multiple captures. This allows the analysis routine to

identify any stateful protocol packet fields. Stateful protocol packet fields contain

elements that vary depending on data within the packet (e.g., checksum) or stateful

variables (e.g., identification fields). The communication is parsed and variable bytes are

evaluated against typical protocol field patterns [33], [56], [57], [58]. Once differences are

accounted for, a protocol profile is created which contains the communication pattern. The

pattern is then applied to received data to emulate future communication. The baseline is

conducted for each firmware version. Baseline analysis is considered successful if the

routine is able to create a complete baseline profile for captured data. The profile is

considered complete if all stateful protocol packet fields are accounted for. If the baseline

or profile success conditions are not met preventing successful profile creation, then the

tool is unsuccessful.

3.1.3.2 Emulation. Given the baseline profiles, the PLC can be removed from

the communication setup and the emulation environment can be implemented by directly

connecting the interface computer to the verification tool. Figure 3.2 illustrates the

emulator setup. The emulator connects to the interface computer and mimics PLC

messages to initiate a firmware load. The emulator applies the baseline analysis data to the

stored PLC communication data to create valid PLC reply packets. The emulation is

conducted for each test case. The emulator is considered successful if the routine is able to

utilize all available baselines to capture complete firmware loads. A firmware load is

considered complete if the interface computer firmware loading program indicates the

upload is complete.

3.1.4 Firmware Verification. Firmware modification tests are separated into two

distinct types: changes to non stateful protocol data within a capture, and changes to

firmware data within a capture. Note that stateful protocol fields are expected to change

24

Verification Routine
PLC Emulator Mode

Captured

Data

Known Good

Firmware

Capture

Format

Communication and

Firmware Data
Verification

Tool

Compare &

Validate

Figure 3.2: Emulator setup.

within captures, so there is not a class of stateful field modifications. Represented

possibilities for data modification within a capture are data additions, subtractions, or

content modifications. Unmodified data is also used as a control to indicate basic

functionality. Test cases comprise a representative set of these possibilities for

modification, as well as a control for each of the distinct types of modification. Each test

modification and known good baseline is run against a standard MD5 hash function, a

bitwise check function, and the tool’s firmware verification function.

3.1.5 Assumptions and Limitations. Once the tool acquires a baseline, the

emulation routine allows the to tool operate without the need for a PLC. As opposed to

related research outlined in Chapter 2, the tool does not require modification of system

architecture or system devices. It is assumed that the independent functionality, the lack of

system modification, and the execution on a portable laptop makes the tool feasible for

operational use.

The PLC and the interface computer are assumed to begin in a known good state.

Additionally, when capturing, analyzing, and emulating data, it is assumed that the system

is deterministic. Therefore multiple iterations of the same test are expected to produce

identical outcomes.

25

The representative test cases are indicative of possible permutations of test cases.

When checking modified firmware or protocol bytes, the location of the modification does

not matter. The validation tool does not take location information into account; it analyzes

only the differences between the baseline and firmware capture. Because the location of

the modification does not matter, a location at any non stateful protocol field position or

any firmware data field position is considered equivalent to any other modification of the

same type. Therefore, a single modification of each class is sufficient to demonstrate other

modifications of the class.

Stateful protocol fields are not tested by the validation routine test cases because they

are assumed valid. The emulator routine testing encompasses the stateful protocol field

testing because it is assumed that the interface computer is adhering to typical

communication standards. This assumption is based on the fact that since the emulator

only sends known packet PLC replies in order, the interface computer has the option of

either replying with a valid successive request, or an invalid successive request. A valid

request adheres to emulator expectations in terms of stateful protocol fields and therefore

stateful fields remain valid. An invalid request may or may not deviate in terms of stateful

protocol fields. Invalid data may either cause an error on the emulator side, which would

indicate possible modification, or the next successive valid PLC reply will be sent, which

would cause an error on the interface computer side, also indicating possible modification.

If the case occurs that the interface computer sends data with incorrect stateful protocol

fields but the emulator is able to send a valid reply and communication continues without

an error on either side, then an error that is not identified occurs. An error such as this is

caused by data corruption on the physical link layer, and not a purposeful modification. A

system limitation is that errors in stateful fields are only accounted for if they cause errors

or modifications to future packets.

26

It is possible some fields may change very slowly, and two successive firmware loads

may not capture this behavior. It is assumed that allowing one load in between two

successive firmware loads is sufficient to ensure all stateful protocol fields are manifested.

Consideration for changes with greater delays is discussed in areas for future work.

3.2 Environment

The evaluation environment consists of a standard Windows XP personal computer

and an Allen Bradley FlexLogix 5434 PLC. The personal computer represents the

interface computer designed to upload the RSLogix firmware. The interface computer has

Rockwell Software’s RSLogix 5000 suite installed as well as ControlFLASH 9.00.015,

the firmware loading program.

For the initial baseline capture, the verification tool is connected to the primary

communication line via a passive serial adapter tap, enabling interception of

communication data while preserving communication between the interface computer and

the PLC. For the subsequent emulator and verification phases, the tool is connected to the

interface computer through a serial cable. The PLC and interface computer communicate

using the DF1 protocol. The serial port is configured to correspond with the PLC’s serial

data capabilities, specifically a baud rate of 19200, 8 data bits, no parity, and 1 stop bit.

Firmware versions 15.06.01 or 16.21.12 are firmware load options for the FlexLogix

5434. Baseline firmware files and corresponding binary files are stored in the

ControlFLASH program directory. Each individual ControlFLASH upload is executed

with the same selection method to eliminate variations in the serial data transfer. Data

capture starts when the ControlFLASH program is opened, and ends when the firmware

upload shows complete on the interface computer.

27

3.3 Evaluation Technique

3.3.1 Baseline Capture and Analysis Test Cases. The two firmware versions

15.06.01 and 16.21.12 represent the possible versions that can be loaded onto the PLC.

Each capture is run twice to identify stateful protocol fields. Two captures are the fewest

number of captures necessary to identify changes between captures. Each test case

produces a baseline communication profile.

The following steps outline the necessary actions for each test case. First the tool is

placed in passive serial capture mode and the ControlFLASH environment is opened on

the interface computer. The device is connected according to the passive setup as noted in

section 3.1.3.1. The tool is configured for port specifications that match the specifications

outlined in the environment section. Each serial line is chosen based on the corresponding

device’s tap and the data capture is started. Once capture has started, the 1794-L34 PLC is

selected from the ControlFLASH catalog. Then the AB DF1-1, DF1 network is expanded

and location 01, the FlexLogix L34 Processor is selected. Slot 0 is confirmed as the

backplane position. The revision selected corresponds to the test case, and the update is

started. Screenshots of the ControlFLASH firmware loading process are included in

Appendix 5.4. The tool’s data capture routine automatically ends once updating is

complete and all data is received. The tool is then put in capture baseline and analysis

mode. The saved capture data files created during passive capture are selected. The tool

produces a corresponding baseline. Capture and analysis test cases consist of the possible

firmware load options:

1. Version 15.06.01 to version 15.06.01 baseline capture followed by a second version

15.06.01 to version 15.06.01 baseline capture and an analysis of the two loads

producing a corresponding baseline.

28

2. Version 15.06.01 to version 16.21.12 baseline capture followed by a second version

15.06.01 to version 16.21.12 baseline capture and an analysis of the two loads

producing a corresponding baseline.

3. Version 16.21.12 to version 16.21.12 baseline capture followed by a second version

16.21.12 to version 16.21.12 baseline capture and an analysis of the two loads

producing a corresponding baseline.

4. Version 16.21.12 to version 15.06.01 baseline capture followed by a second version

16.21.12 to version 15.06.01 baseline capture and an analysis of the two loads

producing a corresponding baseline.

3.3.2 Emulation Test Cases. The four baselines created during baseline capture

and analysis test case execution are used for the emulation test cases. This tests the tool’s

ability to emulate each loading option for updating the PLC.

The following steps outline the necessary actions for each test case. First the tool is

placed in passive serial capture mode and the ControlFLASH environment is opened on

the interface computer. The device is connected according to the emulator setup as

outlined in section 3.1.3.2. The tool is configured for port specifications that match the

specifications outlined in the environment section. Once emulation has started, the

1794-L34 PLC is selected from the ControlFLASH catalog. Then the AB DF1-1, DF1

network is expanded and location 01, the FlexLogix L34 Processor is selected. Slot 0 is

confirmed as the backplane position. The revision selected corresponds to the test case,

and the update is started. The tool’s data emulation routine automatically ends once

updating is complete and all data is received. Emulation test cases consist of the possible

firmware load options:

1. Version 15.06.01 to version 15.06.01 emulation

2. Version 15.06.01 to version 16.21.12 emulation

29

3. Version 16.21.12 to version 16.21.12 emulation

4. Version 16.21.12 to version 15.06.01 emulation

3.3.3 Firmware Verification Routine Test Cases. The firmware verification routine

test cases are run with each of the three verification routines: (i) MD5 hash, (ii) firmware

bitwise check, and (iii) the tool’s verification routine. The test case modifications are

single byte modifications.

The following steps outline the necessary actions for each test case for the MD5

routine. The MD5 hash function is the built in MD5 checksum in the HxD program [59].

The test file and known good files are opened in the editor, and the MD5 checksum routine

is selected from the analysis file option for each file. A resulting checksum is produced for

each file. The test case checksum is compared to the known good checksum.

The following steps outline the necessary actions for test case for the firmware

bitwise check routine. The firmware bitwise check is a built-in routine in the verification

tool. The tool is placed in bitwise firmware check mode. The captured file path and the

known good firmware file path are selected. The tool’s output indicates if the firmware

data is or is not contained within the capture.

The following steps outline the necessary actions for each test case for the tool’s

verification routine. The tool is placed in validate serial capture mode. The corresponding

baseline file path and the test capture file path are selected. The tool’s output indicates if

the firmware is or is not equivalent.

3.3.3.1 Control Test Cases. Control test cases are unmodified firmware

captures to test proper verification functionality. Baseline files used are respective

baselines for the corresponding verification method. The MD5 hash verification and the

tool’s verification method use the delineated baselines whereas the bitwise check method

uses the baseline firmware file binary.

30

1. No modification - version 15.06.01 to version 15.06.01 baseline versus a good

15.06.01 to 15.06.01 capture

2. No modification - version 15.06.01 to version 16.21.12 baseline versus a good

15.06.01 to 16.21.12 capture

3. No modification - version 16.21.12 to version 16.21.12 baseline versus a good

16.21.12 to 16.21.12 capture

4. No modification - version 16.21.12 to version 15.06.01 baseline versus a good

16.21.12 to 15.06.01 capture

3.3.3.2 Modification Test Cases. Modification test cases consist of single byte

modifications to create a lengthwise change or a bitwise content change. Baseline files

used are respective baselines for the corresponding verification method. The MD5 hash

verification and the tool’s verification method use the version 15.06.01 to version 15.06.01

baseline whereas the bitwise check method uses the 15.06.01 firmware file binary.

1. Lengthwise modification - baseline versus added single byte to the end of the

firmware data embedded within a packet of the capture

2. Lengthwise modification - baseline versus subtracted single byte from the end of the

firmware data embedded within a packet of the capture

3. Lengthwise modification - baseline versus added single byte to the end of the last

captured data packet

4. Lengthwise modification - baseline versus subtracted single byte from the end of the

last capture data packet

5. Bitwise modification - baseline versus modified single byte in the firmware data

embedded within a packet of the capture

31

6. Bitwise modification - baseline versus modified single byte in the last captured data

packet

3.3.4 Evaluation of Firmware Modification. Each test case outcome is either

successful or unsuccessful at identifying modifications. The baseline capture and

emulation tests consist of four test cases. The baseline is successful if the tool creates a

baseline from captured data. The emulation is successful if the tool captures a firmware

load.

Firmware modification test cases consist of four control and six modified cases

executed by the three verification routines for a total of thirty outcomes. A successful

outcome is the correct indication of the absence of modification for the control cases, and

the presence of modification for the modified cases.

3.4 Methodology Summary

This chapter provides the methodology for evaluating the firmware verification tool.

The data capture and analysis capabilities of the tool are examined to demonstrate the

tool’s ability to identify modified firmware and function independently of a PLC. The

effectiveness is tested using a comparative analysis of the verification tool’s routine to

MD5 and bitwise check data integrity check routines. The test cases consist of

representative modifications demonstrating possible modification classes.

32

4 Analysis and Results

4.1 Tool Development

A typical ControlFLASH firmware load involves selecting a PLC and corresponding

available firmware version, and then proceeding through a firmware upload process. For

each firmware file, the process first sends an update command, waits for the PLC to power

cycle, sends the firmware data, and then waits for a success or failure response and a final

power cycle. The tool baselines and emulates the firmware loading process. For the initial

baseline phase, the tool captures data from the interface computer to the PLC. When the

baseline has been captured, the tool runs an analysis on the captured communication and

creates an emulation profile. Subsequently, the tool can connect directly to an interface

computer to download and independently verify firmware. The tool was developed in C#

using Visual Studio 2008 and executes on the Windows 7 64 bit operating system. The

tool requires two serial ports or serial port adapters on the host computer to capture serial

data.

4.1.1 Protocol Patterns. The verification tool requires adequate functionality to

capture and interpret data from Allen-Bradley devices utilizing the DF1 full duplex

protocol. Patterns are applied to a known good PLC capture, identifying fields to create a

baseline profile.

4.1.1.1 Identifying Protocol Fields and Patterns. The tool employs a brute

force optimization technique for identifying the protocol fields and patterns. First, start

fields are used to group received data into packet structures, separating each block of data

by start field. The start field identification algorithm begins with the first byte in the

capture as the initial field and seeks to successively increase field length while maintaining

33

Packet Header
Block

• Packet start
bytes

• Stateful
fields

• ID field

• Command
bytes

Data Block

• Command
dependent
data bytes

Packet End
Block

• Packet end
bytes

• Stateful
fields

• Error
check field

start packet1 command
00

0x00 0x01 0x02 end checksum

start packet2 command
01

0x00 0x01 0x02 0x03 0x04 end checksum

start packet3 command
01

0x00 0x01 0x02 0x03 0x04 end checksum

start packet4 command
00

0x00 0x01 0x02 end checksum

start packet5 command
02

0x00 0x01 0x02 0x03 end checksum

start packet6 command
03

0x00 0x01 0x02 0x03 0x04 end checksum

Example Packet Field Blocks

Figure 4.1: Example packet fields.

field occurrence rate. The field that optimizes the function is chosen as the start field. The

capture is then divided into packets beginning with the identified start field.

Once grouped, the checksum field is accounted for by searching packets right to left

for mismatches. Mismatches are identified as fields that change between the two baseline

captures. If a mismatched field is found, the checksum identification algorithm computes

a checksum of the packet data and compares it against the mismatched field value. Note

that the algorithm computes checksums of various substrings within a packet as start bytes

34

may not be included within the checksum computation. If the computed value and field

value match for all packets in the capture, the field is identified as a checksum field.

Finally, other field mismatches are checked, such as the transaction number. The

algorithm for remaining mismatches identifies fields by searching for the field value in the

corresponding interface computer request packet. If a field of equivalent value is found at

the same location for all mismatches within a capture, then the mismatch is grouped with

the corresponding equivalent value. The protocol parser class diagrams are included in

Appendix Figure C.3.

The contents of a firmware load including protocol and firmware bytes are visually

represented in Figure 4.1. The figure shows example packet fields and their locations in

an example capture. The stateful data fields applicable to DF1 are a two byte transaction

number for packet identification and a block check character (BCC) checksum field. An

escape byte of 0x10 is also used in the event end bytes occur within the data field [56].

The interface computer sends polling packets during power up while the PLC does not

send packets until the power cycle is complete. Figure 4.2 identifies protocol and

firmware bytes within a firmware capture. Each pixel represents a single byte in the

capture. Approximate regions marked are connection initialization and connection close

communications. Firmware upload data and protocol upload data is indicated as well,

illustrating the approximate location and amount of overhead protocol data necessary for a

firmware upload. The relative density of protocol bytes and the size of the file depict the

potential for modification. The profile creation class diagrams are included in Appendix

Figures C.2 and C.3. Pseudocode for tool protocol identification algorithms are included

in Appendix A.

4.1.2 Data Emulation. After the baseline is created, the tool can independently

download and verify firmware data and communication data sent from an interface

35

Actual Firmware Load Capture (v.15)

Firmware Loading
Process Key

Initialize Connection

Transfer Firmware

Verify Successful Install &
Close Connection

Firmware Data Protocol Data

Figure 4.2: Protocol and firmware bytes in a version 15 capture.

computer. The tool uses the baseline profile to emulate the PLC, replaying the PLC’s data

with protocol modifications to communicate with and download firmware from the

interface computer. The tool iteratively sends complete packets.

The emulator seeks to imitate the ControlFLASH loading process. Figure 4.3 shows

a PLC capture excerpt after parsing, delineated by packet. Each pixel represents a single

byte. The raw data as depicted in Figure 4.2 is analyzed and parsed into the displayed

packets. The various field delineations are represented. During the connection

initialization phase, the PLC communicates its model number and firmware revision

number. The interface computer does not register a list of PLCs so the emulator can reply

with any valid field values. Once loading begins, successive packets sent are

acknowledgement packets to indicate successful receipt of data from the interface

computer. When all data is received the PLC sends indication upon power cycle

completion and closes the firmware upload connection.

The emulator allows the tool to be used independently of a PLC. Without the

emulator feature, all captures require the tool to passively observe firmware loads between

36

an interface computer and a PLC, which does not necessarily prevent malicious firmware

from installing on the PLC. Independent data capture allows verification before

installation, increasing the difficulty of a successful firmware attack. The PLC emulator

class diagrams are included in Appendix Figure C.4

Initialize Connection

Parsed PLC Communication Profile
Packet Block Detail (v.15)

Verify Successful Install

…

Verify Packet Receipt

Close Connection

Packet start field

Key

Packet ID field

Escape Byte

Unchanging Data

Checksum Field

Figure 4.3: Subset of blocks created by the parsing and analysis process of a version 15
PLC data capture.

4.1.3 Firmware Verification. The two baseline firmware captures may have

differing fields, if the protocol includes any stateful fields. The DF1 protocol, as outlined,

does include stateful fields. Figure 4.4 illustrates example firmware capture baseline and

verification test cases. Fields that are different from one baseline capture to the other are

noted, and these fields are acceptable deviations for the capture in question as well.

Escape bytes are also accounted for, if used. Beyond these expected deviations, the

presence of mismatches between fields that are not baseline deviation fields, including

37

lengthwise and bitwise mismatches, demonstrate the capture contains invalid data. The

firmware verification classes are included in Appendix Figure C.5.

Accepted Firmware Capture Deviation
Example

Baseline captures

Baseline deviations

Lengthwise
Modification

Unaccepted Firmware Capture Deviation
Examples

Baseline

Bitwise
Modification

Baseline

Figure 4.4: Example firmware capture verification cases.

4.2 Results

The results demonstrate the tool’s successful baseline, analysis, and emulator

capabilities. The tool’s firmware verification routine successfully identified modified and

unmodified firmware captures. Images of tool test case modifications are included in

Appendix D and images of the tool performing test cases are included in Appendix C.6.

4.2.1 Baseline Capture and Analysis Results and Emulation Results. Each

baseline capture and analysis routine test case successfully captured two loads and created

38

a baseline profile without discrepancies or errors. The emulator successfully captured

firmware loads utilizing each baseline version without discrepancies or errors.

4.2.2 Firmware Modification. Success and failure for each test case verification

routine are noted in the Figure 4.5. The tool’s verification routine correctly identified

modified and unmodified firmware. The MD5 routine failed on all cases because it did not

correctly identify control cases as unmodified. Bitwise check correctly identified the

presence of firmware data bytes within a capture, but failed to recognize additional

firmware data bytes, or protocol modifications.

Test Case MD5 Bitwise Check Tool Verification

Control 1 Failure Success Success

Control 2 Failure Success Success

Control 3 Failure Success Success

Control 4 Failure Success Success

Firmware Data Addition Failure Failure Success

Firmware Data Subtraction Failure Success Success

Protocol Data Addition Failure Failure Success

Protocol Data Subtraction Failure Failure Success

Firmware Data Modification Failure Success Success

Protocol Data Modification Failure Failure Success

Figure 4.5: Firmware verification routine results.

4.3 Analysis

The tool successfully verified unmodified captures, and correctly detected each

modified capture. Additionally, the baseline capture and analysis successfully produced

39

baseline profiles, and the emulator successfully imitated a PLC during firmware

verification.

4.3.1 MD5 Hash, Bitwise Check, and Tool Verification Routines. The MD5 routine

failed on all cases. Due to changing stateful fields, two functionally equivalent captures

produce different hash values. The bitwise check routine failed to detect lengthwise

additions and protocol modifications. These failures were anticipated, and demonstrate the

shortcomings of a hash function or simple bitwise check. Indeed, checking captured data

to ensure it contains firmware bytes is inadequate. The bitwise check case failures

demonstrate that a verification routine must have protocol knowledge or it cannot perform

a sufficiently thorough verification. The tool’s firmware verification function correctly

identifies the addition because it checks the firmware data as well as the protocol data.

The emulator ensures that packets are sent and received in the same manner as the

baseline capture. It is critical that the tool verifies that the same firmware bytes are sent in

a manner identical to the baseline. Without this verification, it is possible for an attacker to

send packets that contain the same bytes as the firmware, but embed malicious data in the

packet’s protocol bytes. The captured data will still contain all firmware bytes, passing a

bitwise check to see if the transfer contains all firmware data, but modifications of this

type will fail a check that includes protocol verification. The bitwise firmware check test

cases demonstrate the importance of the tool’s emulation and verification functions -

allowing not only the firmware data to be verified, but the communication protocol data as

well.

4.4 Discussion on Limitations

4.4.1 Platform Limitations. The tool was tested and developed on a Windows 7

platform and requires two serial ports, or USB to serial adapters. This hardware

requirement may be a limiting factor. Not all PLCs have serial firmware upload

40

capabilities. Some PLCs may utilize proprietary loading devices or other communication

standards as well. Additionally, The tool executes on a typical personal computer, which

has the same vulnerabilities as the interface computer. Though it has the benefit of

providing external verification to the interface computer’s data transfer, the computer the

tool is on may still be at risk of compromise. This risk can be mitigated if the tool is

executed on a platform that has memory or processing constraints, limiting the possibility

for platform modification (e.g., embedded device).

The tool may be detectable if the attacker is aware of the tool and has compromised

the interface computer. The tool’s emulator does not emulate the same timing of packets

sent from the PLC, and the tool only responds in a manner imitating original PLC

responses. It may not respond correctly to packets it does not expect, and an attacker can

use this to their advantage. Note that an attack would have to detect these differences in a

subtle manner, sending an unmodified load to the tool while continuing to send modified

firmware to the PLC. However, the tool can still capture any differences when loading

firmware directly to the PLC by using the tool’s passive serial capture capability. Any

attack would require extensive knowledge of the tool.

4.4.2 Development Limitations. Protocol pattern detection relies on the computer

analyzing the data and deriving potential fields, based on the data. Although sufficient for

the tested firmware, it is possible that these patterns may not always provide a conclusive

profile for other protocol implementations. The current functionality is not a complete

representation of all possible patterns that exist in today’s protocols. The development

focused on the DF1 protocol; further development is necessary before the tool can be

considered platform independent.

41

4.5 Analysis Summary

Using the evaluation technique, the tool’s baseline analysis and emulation routines

were tested with firmware uploads, successfully creating baseline profiles and emulating

PLC traffic to capture firmware loading data. The firmware verification routine

successfully identified modification or no modification on all test cases. The MD5 routine

failed on all cases due to inability to identify unmodified data, and the bitwise check failed

to detect firmware data additions and protocol modifications. The tool verification

routine’s success rate demonstrates its tailored ability to recognize modified firmware.

42

5 Conclusions and Future Work

5.1 Conclusions

Critical infrastructure cyber security research and development is currently focused

on the network layer. Critical infrastructure protection standards and best practices seek to

reduce the potential for network attacks originating from the public internet because of the

increasingly online nature of SCADA systems [54]. Many proposed and developed tools

add encryption or intrusion detection systems to SCADA networks through field device

modification or by a bump-in-the-wire device addition. While these tools may be

successful at auditing malicious or atypical network traffic, all fail to mitigate malware

originating from potentially trusted or non-network layer ingress vectors. Escaping the

electronic perimeter mentality, this research seeks to expand SCADA system security to

provide integrity and security below the network layer. PLC firmware is a highly

vulnerable target because of its capability to control a PLC, lack of access control security,

and lack of auditability.

The tool presented is a firmware emulation and validation tool intended to audit

firmware loads from an interface computer to a PLC at the last externally electronically

modifiable point. The tool is a novel application, designed to be used as a malware

prevention and detection device for PLC firmware. The tool increases SCADA system

security by creating a closed system with respect to the PLC firmware by validating inputs

from the interface computer; once initiated in a secure state the PLC remains in a secure

state as long as firmware inputs are valid. The tool can be set up to work with multiple

PLCs, and once the communication baseline has been created, the tool operates

independently of a PLC. The tool’s ability to check both firmware and communication

data increases the extent of firmware integrity assurance beyond that of a MD5 hash or

simple bitwise firmware data checking routine.

43

The tool was developed and tested on a Windows personal computer. The tool

successfully executed all test cases which consisted of testing the tool’s emulation and

verification routines with the Allen-Bradley FlexLogix 5434 PLC and Rockwell

Software’s ControlFLASH firmware upload program. The tool successfully demonstrates

a proof of concept for a new paradigm of SCADA system cyber security tools focused on

field device security as opposed to electronic perimeter security.

5.2 Impact

This tool is intended as a starting point for the development of a SCADA cyber

security toolkit that focuses on vulnerabilities beyond the network layer. The tool is meant

primarily for malicious cyber attack deterrence and detection. While the network layer

does present possible cyber attack points, limiting defense to the network layer will not

provide complete security. This tool seeks to expand the SCADA cyber defense toolkit by

providing PLC centric security. Specifically, the adaptable baseline and PLC emulation

functionality is operationally useful as it allows resource and manpower reduction while

still providing firmware integrity assurance. Checking every PLC in the field is usually

infeasible due to the large quantity and remote locations of PLCs. However, checking

every firmware loading computer is a simpler task as these computers are likely more

accessible. Instead of checking PLCs, checking every computer that loads PLC firmware

is an operationally feasible problem and grants an increased degree of confidence that

PLCs do not contain modified firmware.

Regardless of injection point, this tool captures firmware modifications implemented

through the interface computer’s firmware loading mechanism. The change from network

centric security to tailored device security demonstrates a paradigm shift. Consider, for

example, the scenario outlined in Figure 5.1. Vectors that utilize a non networked ingress

point gain access to the SCADA system components including the interface computer.

The interface computer has access to the PLC. Additional device security at the PLC layer

44

audits data from sources inside the network security perimeter, detecting potential

modifications. The tool presented exemplifies how this new paradigm can be applied to

increase SCADA system and critical infrastructure security.

Device Centric

Security Paradigm

Public Internet

Corporate

Network

PLC

Removable

Media

PLC

Firmware

Possible Malware

Ingress Points

Verification

Tool

Creates a closed

system

Figure 5.1: Device centric security.

5.2.1 Impact to Manufacturers. PLC manufacturers are considered trusted actors.

Published SCADA security standards assume that software and hardware from a trusted

company must be trusted as well. This can be dangerous when PLC technicians connect to

a third party server to download firmware or software updates. Malicious modifications to

the manufacturer’s firmware version propagate to all end users who download firmware

updates. PLC manufacturing companies can benefit from firmware verification because it

grants them the ability to baseline and verify their own versions on a reoccurring basis.

Additionally, the PLC manufacturers can produce a baseline profile for end users to

compare against their own baseline. If the known good is available for inspection by the

community, any incidents of detected firmware modification can be more quickly

45

identified and reported, improving speed of mitigation and reducing potential malicious

effects.

5.2.2 Impact for Industry. The majority of critical infrastructure is privatized, so

the benefit of any proposed security measures must outweigh the cost if it is to be

implemented. Expensive tools, developmental tools, or tools that require system

reconfiguration can be difficult to justify on an already functioning system.

There have been no documented critical infrastructure cyber attacks targeting the

United States. However, waiting until an attack to implement security measures

retroactively could be dangerous considering the potential kinetic effects of a successful

attack. A toolkit of simple but comprehensive tools focused on protecting SCADA system

field devices that are relatively inexpensive and easily implementable would benefit the

critical infrastructure industry.

5.2.3 Impact for Security Professionals. SCADA security best practices do not

currently advocate any tools for field device security, and security teams such as

ICS-CERT currently lack tools for SCADA specific malware detection. There is a need

for SCADA specific malware prevention and detection tools. The firmware verification

tool’s primary use is to prevent malicious firmware from being uploaded onto a PLC.

However, the tool can also be used as a response mechanism if a known good baseline is

available. The tool can be used to check all possible interface computers and identify

which, if any, computers were compromised. The tool’s portability and versatility make it

a prime candidate for operational implementation. Checking each computer versus

checking each PLC reduces the problem complexity, decreasing system recovery time for

security teams. Additionally, verifying each interface computer is sending unmodified

firmware increases the level of security assurance with respect to PLC devices. This type

of tailored assurance is not currently provided by network security tools. With further

46

development, this tool could be instrumental in preventing malicious PLC firmware

modifications on a variety of PLCs.

5.2.4 Potential Implementations. The tool has a variety of potential uses. The tool

can be used to verify firmware integrity before applying firmware updates to PLCs. HMIs

can also be checked to ensure they transfer unmodified firmware. The tool can audit

communication between a PLC and interface computer during an update to identify

potential malicious inclusions. If malware modifies firmware data, then the tool can

pinpoint the infected computer. Additionally the tool’s passive tap ability can capture

serial communication data and log this data for future auditing.

5.2.5 Potential Weaknesses. An attacker attempting to circumvent the tool may

discover its presence by checking packet response times. The tool runs faster than an

actual PLC due to increased processor speed. Additionally, the tool only responds in a

way as to mimic the PLC’s expected response. An attacker could determine if the tool is

being used by sending unexpected firmware packets and receiving an incorrect response.

Note that any deviations beyond expected field differences will still be detected during a

firmware load. Additionally, this tool does not account for firmware modifications that are

manifested in ways other than through the firmware loading interface.

5.3 Future Work

5.3.1 Increased Testing. Testing was limited to one PLC model and one interface

computer. Further testing on different models and manufacturers is needed to examine

portability. Testing modified firmware also presents limiting factors. Allowing greater

delays between loads may produce different baseline data. Currently a one upload delay is

used; this delay can be lengthened in future testing.

47

5.3.2 Improved System Compatibility. Follow on work for firmware verification

includes expanding functionality to work with multiple PLCs and SCADA system

implementations. This includes research and development on various PLC protocols to

create new protocol analysis patterns as well as adding functionality for system setups that

use non-serial loading mechanisms. Ethernet is the next logical capture interface.

Additionally, checksum routines are currently limited to the BCC function; cyclic

redundancy checking or other routines would provide pertinent added functionality.

5.3.3 Increased Tool Security. The verification tool’s platform can be modified to

add security to the tool platform itself. The tool executes on a personal computer, so it is

vulnerable to attack as well. To increase the tool’s security, the tool can be ported to an

embedded device, or used in conjunction with a field programmable gate array. These

changes increase the tool’s security by limiting its memory and computation capabilities.

5.3.4 Potential to Test All Possible PLCs. The emulator can be further developed

to have greater functionality. The emulator currently only replays PLC data, so from the

perspective of the interface computer, it appears that the same PLC is connected each

time. The PLC identification response can be updated so that various PLC identification

values are sent. If an attack is targeted at a specific PLC, then modifying these

identification values may help uncover malicious system modifications. Iterating through

possible values may trigger specific logic conditions. The tool can masquerade as the full

range of PLCs without requiring increased equipment or resources by changing

identification values.

5.3.5 Traffic Generation. The tool also has potential for PLC traffic generation as

a penetration testing/fuzzing tool, or as a node in a honeynet setup. The tool applies

patterns to captured data to generate valid packets used during a firmware load. The tool

can be modified to generate PLC traffic for these alternative applications as well. The tool

48

can capture and baseline data other than a firmware load, giving it different protocol

knowledge and different replay ability. The tool can appear to be a variety of different

systems, depending on the emulator baseline, without requiring additional resources for

each new setup. Functionality can also be added to generate packets with minor deviations

adhering to protocol rules by using evolutionary algorithms. Generated traffic can identify

malicious attack or reconnaissance attempts. The tool can also generate packets designed

for testing PLCs or other field devices. When used with a test PLC, the tool can iterate

through valid packet combinations to uncover potentially insecure PLC actions or failure

conditions.

5.3.6 Alternative PLC Layer Security. The tool can also be used to check

communication data in settings other than firmware loads, such as during a logic program

load or a program block value check. For example, Stuxnet used a modified DLL to hide a

value stored on the PLC from the HMI software and end user [22]. If the function block

value check communication data was baselined after initial install, the Stuxnet

modifications would be detected.

5.4 Concluding Remarks

Creating security tools specific to SCADA systems is necessary to maintain and build

trust in critical infrastructure systems. The primary goal of validating firmware extends

beyond ensuring known good firmware is loaded onto a PLC – it also helps create a closed

system with respect to the PLC. The PLC has the highest level of local control over a

SCADA system, so it is critical that controllers are verified on basic hardware and

software levels before security measures can be effectively applied to higher levels.

Firmware is the lowest electronically modifiable level of many PLCs. Indeed, firmware

validation is the first logical step when considering electronic security.

49

The firmware verification tool captures serial data during firmware uploads and

verifies captured upload data against a known good baseline. The tool has PLC emulation

functionality and can analyze firmware without the presence of a PLC. While serial data

capture, data verification, and emulation are not new ideas individually, the tool combines

these ideas in a novel manner tailored to SCADA system security. The verification tool

offers a novel approach tailored for SCADA security because it requires no system

modifications or additions and does not affect the production system. Additionally,

implementing the verification tool does not introduce attack input vectors to the PLC

because the tool it is not physically wired to exchange communication with the PLC. The

verification tool is a viable option for increasing PLC firmware security.

50

Appendix A: Typical ControlFLASH Firmware Load Process

The following screenshots outline a typical ControlFLASH firmware load process to
the Allen-Bradley FlexLogix 5434 PLC.

Figure A.1: Open ControlFLASH.

51

Figure A.2: Select PLC type.

Figure A.3: Select PLC from device network.

52

Figure A.4: Enter PLC designator number.

Figure A.5: Select firmware revision number.

53

Figure A.6: Begin upload.

Figure A.7: Uploading in progress.

54

Figure A.8: Power cycle upon upload.

Figure A.9: Successful Install.

55

Appendix B: Pseudocode

The following algorithms abstract the tool’s routines and functionality.

B.1 Data Capture

Input: plcS erialLine, computerS erialLine
Output: plcData, computerData
Thread plcThread = new Thread(plcS erialLine, plcData)
Thread computerThread = new Thread(computerS erialLine, computerData)
Thread Function():
begin

while receiving do
if myS erialLine.hasData then

myData.add(myS erialLine.data)
end

end
end

Figure B.1: Data Capture Algorithm

56

B.2 Protocol Analysis

Input: captureSet plcData[2], captureSet computerData[2]
Output: protocolPro f ile
foreach captureSet dataS et do group captures into packets for both the PLC and
computer

GroupIntoBlocks(dataS et.capture1, dataS et.capture2)
end
SavePackets()
SaveMismatches()

Figure B.2: Protocol Analysis Algorithm

Input: captureSet plcData[2], captureSet computerData[2]
Output:
GroupIntoBlocks(capture1, capture2):
begin

List possibleValues = FindMostUsedByteValues(capture1)
ByteList startBytes = possibleValues[0]
int usageDensity = FindNumOccurencesInCapture(capture1, startBytes)
optimal = false
while !optimal do create a start byte string of maximal length

List possibleValues = FindMostUsedByteValues(capture1, startBytes)
startBytes = startBytes + possibleValues[0]
newDensity = startBytes.length +

FindNumOccurencesInCapture(capture1, startBytes).normalize
if newDensity greater than usageDensity then

usageDensity = newDensity
else

optimal = true
startBytes.removeLast()

end
end
dataS et.setPacketBlocks(startBytes)

end

Figure B.3: Protocol Analysis Block Grouping Algorithm

57

Input: captureSet plcData[2], captureSet computerData[2]
Output:
escapeByte = CheckForEscapeByte(plcData)
ResolvePLCMismatches():
begin

foreach packet1, packet2 in plcData[1], plcData[2] do resolve mismatches
if packet1 != packet2 and !checksum then

checksum = CheckMismatchAsChecksum(packet1, packet2,
escapeByte)
if checksum then resolve for all packets

SetChecksumForAllPackets(plcData[1], plcData[2])
end

elsecheck for data in equiv computer packet
CheckIfRepeatedFromComputerBlocks(computerData[1], packet1)

end
end

end

Figure B.4: Protocol Analysis Mismatch Resolving Algorithm

Input: plcData
Output: bool escapeByte
CheckForEscapeByte(plcData):
begin

List possibleValues = FindMostUsedByteValues(plcData)
foreach possibleValues in plcData do see if escape strings work

if plcData[1].applyEscapeByte(escapeByte) is more similar to
plcData[2].applyEscapeByte(escapeByte) then

return true
end

end
return false

end

Figure B.5: Protocol Analysis Escape Byte Check Algorithm

58

B.3 PLC Emulator

Input: computerS erialLine, protocolPro f ile
Output: computerData
while receiving do

computerData.addData(computerS erialLine.data)
if computerData.receivedFullPacket then a packet has been received

computerS erialLine.write(produceNextPacket(protocolPro f ile,
computerData))

end
end
return computerData

Figure B.6: PLC Emulator Algorithm

Input: protocolPro f ile, computerData
Output: packet
ProduceNextPacket(protocolPro f ile, computerData):
begin

protocolPro f ile.resolveMismatchesSoFar(computerData)
packet = protocolPro f ile.nextPacket()
protocolPro f ile.applyChecksum(packet)
protocolPro f ile.applyEscapeBytes(packet)
return packet

end

Figure B.7: PLC Emulator Packet Production Algorithm

59

B.4 Firmware Verifier

Input: baselineData[2], receivedData
Output: valid
List baselineMismatches = getMismatches(baselineData[1], baselineData[2])
List newMismatches = getMismatches(baselineData[1], receivedData)
if newMismatches == null then function returned error

valid = false
return valid

end
foreach mismatch in newMismatches do ensure all mismatches are accounted for

if !baselineMismatches.contains(mismatch) then mismatch not expected
valid = false

end
end
return valid

Figure B.8: Firmware Verification Algorithm

60

Input: data1, data2
Output: mismatches[]
getMismatches(data1, data2):
begin

prevByte1 = data1.readByte()
prevByte2 = data2.readByte()
location = 1
while !data1.atEnd do

if data2.atEnd then not enough bytes in data2
return null

end
byte1 = data1.readByte()
byte2 = data2.readByte()
if byte1 != byte2 then data mismatch

if prevByte1 == escapeByte && byte1 == escapeByte && prevByte1
!= prevByte2 then

data2.position–
location–
prevByte1 = byte1

end
else if previousByte2 == escapeByte && byte2 == escapeByte &&

prevByte1 != prevByte2 then
data1.position–
location–
prevByte2 = byte2

end
else

mismatches.add(location)
end
location++

prevByte1 = byte1
prevByte2 = byte2

end
if !data2.atEnd then too many bytes in data2

return null
end

end

Figure B.9: Firmware Verification Mismatch Algorithm

61

Appendix C: Tool Class Diagrams

The following class diagrams display the tool’s code classes and their members and
functions.

C.1 Main Class and Helper Classes

error

Static Class

public

throwError() : void

helperFunctions

Static Class

public

byteArrayToString() : string

closeStreams() : void

compareByteArrays() : bool

convertStringToByteList() : LinkedList<byte>

countOccurences() : int

displayOutput() : void

displaySingleLineOutput() : void

getConsoleFileInput() : string

getEscapedData() : LinkedList<byte>

getInput() : string

getSubList() : byte[]

getYorN() : bool

openBlocks() : LinkedList<packetBlock>

readByte() : byte

removeLinkedListBytes() : void

restoreEscapedData() : LinkedList<byte>

mainConsole

Static Class

public

closeProgram() : void

Main() : void

private

getSelection() : int

runTest() : void

writeIntroduction() : void

outputImage

Class

public

finishImage() : void

outputImage() (+ 1 overload)

setPixel() : void

setPixelLine() : void

private

currentCol : int

currentRow : int

entry : int

image : Bitmap

initializeImage() : void

length : int

pixelsPerEntry : int

saveImage() : void

saveName : string

width : int

Figure C.1: Main Class and Helper Classes.

62

C.2 Passive Serial Capture Classes

plcImitatorObserver

Class

public

exit() : void

plcImitatorObserver()

runThreads() : void

private

captureFilePath : string

compy : passiveObserver

compyObserver : Thread

fwFilePath : string

getBaud() : int

getCaptureFilePath() : void

getDataBits() : int

getForwardData() : bool

getFwFilePath() : void

getObserver() : void

getParity() : string

getParseExistingFile() : bool

getPortName() : string

getStopBits() : float

numObserverThreads : int[]

outputWriter : dataWriter

plc : passiveObserver

plcObserver : Thread

runCapture : bool

passiveObserver

Class

public

getRunning() : bool

passiveObserver()

quit() : void

runReceive() : void

setBaud() : void

setDataBits() : void

setForward() : void

setParity() : void

setPort() : void

setStopBits() : void

writeOutData() : void

private

baudRate : int

buffer : StringBuilder

checkTime() : void

comPort : string

dataBits : int

dataQueue : Queue<byte>

forwardData : bool

lastUsedTime : DateTime

myValue : int

parityBit : Parity

port : SerialPort

running : bool

signalPortInUse : bool

stop : StopBits

writer : dataWriter

dataWriter

Class

public

dataWriter() (+ 1 overload)

getCaptureFilePath() : string

getData() : void

getRunning() : bool

runWriter() : void

writeOutData() : void

private

captureFilePath : string

captureFileStream : FileStream

captureWriter : StreamWriter

messages : Queue<string>

openStreamArray : LinkedList<Stream>

running : bool

signalDoneWriting : bool

threadBuffers : StringBuilder[]

Figure C.2: Passive Serial Capture Classes.

63

C.3 Serial Capture Analysis and Profile Creation Classes

protocolProfile

Class

public

checkForRepeatedMessages() : void

createProfile() : bool

getCaptureFileName() : string

getComputerBlocks() : LinkedList<packetBlock>

getPLCBlocks() : LinkedList<packetBlock>

openStoredBlocks() : void

protocolProfile() (+ 1 overload)

private

analyzeErrorChecking() : void

analyzePLCtoComputerFile() : void

anyMismatchesLeft() : bool

computerBlocks1 : LinkedList<packetBlock>

computerBlocks2 : LinkedList<packetBlock>

computerCaptures : FileStream[]

correctIndividualMismatches() : void

getEndByte() : LinkedList<byte>

getMismatchReplaceIndex() : int

getPLCblockMismatches() : void

groupIntoBlocks() : void

initializeProfile() : void

openCorrections() : void

openStreamArray : LinkedList<Stream>

plcBlocks1 : LinkedList<packetBlock>

plcBlocks2 : LinkedList<packetBlock>

plcCaptures : FileStream[]

preset : bool

presetEscapeByte : byte

saveCompletedBlocks() : void

setBlocks() : void

setEscapeByte() : void

writeStreamBlocks() : void

parserAnalysis

Static Class

public

addArrayValues() : int[]

arraySum() : int

averageValue() : float

findMaxIndex() : int

getNumWithinOccurenceRange() : LinkedList<byte>

median() : int

standardDeviation() : float

packetBlock

Class

public

addRepeat() : void

applyChecksumToData() : LinkedList<byte>

applyMismatchesToData() : LinkedList<byte>

checkMismatchAsChecksum() : void

checkMismatchAsComputerBlockMatch() : bool[]

checkSubArray() : bool

compareBlocks() : bool

escaping() : bool

findLikelyEscapeValue() : byte[]

findMismatchFields() : void

getChecksum() : checksum

getDataBytes() : byte[]

getEndBlockLength() : int

getEndString() : string

getEscapeByte() : byte

getEscapedData() : LinkedList<byte>

getLastRequiredIndex() : int

getMismatchArray() : bool[]

getMismatchList() : LinkedList<plcCompMismatch>

getNewData() : byte[]

getNextMismatch() : plcCompMismatch

getOffsetOfChecksumFromEnd() : int

getRepeats() : int

getStartBlockLength() : int

getStartField() : byte[]

getStartString() : string

getSubarray() : byte[]

hasMoreMismatches() : bool

Length() : int

packetBlock() (+ 1 overload)

removeChecksumMismatch() : void

removePLCCompyMismatch() : void

resetMismatches() : void

setChecksum() : void

setEndField() : void

setEscapeByte() : void

setMismatchList() : void

ToString() : string

tryOverwriteData() : bool

private

dataField : byte[]

dataFieldString : ArrayList

dataLength : int

endField : byte[]

errorChecksum : checksum

escapeByte : byte

escapedDataFieldString : LinkedList<byte>

mismatch : bool[]

mismatchList : LinkedList<plcCompMismatch>

myBlockNumber : int

numTimesDisplayed : int

overwrittenIndex : int

receivedData : LinkedList<byte>

startField : byte[]

useEscaped() : void

useEscapedData : bool

captureConverter

Class

public

captureConverter()

splitSerialCaptureFile() : void

private

captureFile : FileStream

captureInput : StreamReader

captureOutput : BinaryWriter[]

openStreamArray : LinkedList<Stream>

outputFiles : FileStream[]

tuple

Class

public

deleteLastByte() : void

foundNewByte() : void

getBytes() : byte[]

getDistance() : double

getFitness() : double

getFitnessValue() : double

getFrequency() : double

getIndices() : int[]

getLength() : int

getNextTuple() : tuple

increaseByteString() : void

increaseFrequency() : void

numOccurences() : int

runFitness() : void

setFrequency() : void

ToString() : string

tuple() (+ 1 overload)

private

distance : double

fitness : double

frequency : double

indices : LinkedList<int>

initialFrequency : long

lastIndex : int

length : double

setFitness() : void

totalBytes : long

values : LinkedList<byte>

valuesString : string

checksum

Class

public

applyChecksum() : LinkedList<byte>

checksum() (+ 1 overload)

compare() : bool

getBytesFromEnd() : int

getBytesFromStart() : int

getFieldIndex() : int

getType() : string

isValid() : bool

Length() : int

reduceLength() : void

runChecksumCheck() : bool

setFieldIndex() : void

setLength() : void

setType() : void

toString() : string

tryChecksum() : bool

private

bcc() : byte

bytesFromEnd : int

checkBCC() : bool

checksumIndex : int

length : int

startIndex : int

type : string

plcCompMismatch

Class

public

applyMismatchToData() : LinkedList<byte>

compare() : bool

getBlock() : int

getComputerStartIndex() : int

getPLCStartIndex() : int

getReplaceValue() : byte[]

Length() : int

plcCompMismatch() (+ 1 overload)

setBlock() : void

setCompStartIndex() : void

setReplaceValue() : void

setValues() : void

toString() : string

private

computerStartIndex : int

length : int

plcStartIndex : int

replaceValue : byte[]

whichBlock : int

Figure C.3: Serial Capture Analysis and Profile Creation Classes.

64

C.4 PLC Emulator Classes

plcRepeater

Class

public

createTraffic() : void

exit() : void

plcRepeater()

setBaud() : void

setDataBits() : void

setParity() : void

setPort() : void

setStopBits() : void

private

baudRate : int

comPort : SerialPort

comPortName : string

computerData : LinkedList<byte>

computerReader : computerDataBlockReader

dataBits : int

dataReceivedHandler() : void

getBaud() : int

getDataBits() : int

getParity() : string

getPortName() : string

getStopBits() : float

lastRead : DateTime

numPLCBlocks : int

openStreamArray : LinkedList<Stream>

parityBit : Parity

plcDataWriter : plcWriter

profile : protocolProfile

stop : StopBits

timedOut : bool

whoComputer : int

whoPLC : int

writeBuffer : LinkedList<byte>

writeStream : FileStream

plcWriter

Class

public

getBlockNum() : int

getNextData() : LinkedList<byte>

getRunning() : bool

plcWriter()

quit() : void

private

applyModifications() : LinkedList<byte>

canSend() : bool

computer : computerDataBlockReader

currentBlock : packetBlock

currentBlockNum : int

myValue : int

plcBlocks : LinkedList<packetBlock>

running : bool

writeBuffer : LinkedList<byte>

computerDataBlockReader

Class

public

addReceivedData() : void

computerDataBlockReader()

getBlock() : int

getCurrentIndex() : int

getData() : LinkedList<byte>

getRunning() : bool

quit() : void

private

addByte() : void

currentBlockNum : int

currentIndex : int

escapeByte : byte

increaseBlock() : void

lastData : LinkedList<byte>

myVal : int

packetlengths : int[]

receivedBlocks : LinkedList<packetBlock>

running : bool

startField : byte[]

startQueue : Queue<byte>

Figure C.4: PLC Emulator Classes.

65

C.5 Captured Firmware Verification Classes

captureCompare

Class

public

captureCompare()

exit() : void

runCompare() : void

private

baselineData : FileStream

baselineMismatches : LinkedList<int>

compareBlocks() : bool

escapeByte : byte

getMismatches() : LinkedList<int>

mismatchErrorThrown : bool

newData : FileStream

openStreamArray : LinkedList<Stream>

originalData : byte[]

Figure C.5: Captured Firmware Verification Classes.

66

C.6 Firmware Parse and Check Classes

firmwareParser

Class

public

exit() : void

firmwareParser()

runParser() : void

private

capturePath : string

fwFilePath : string

getProtocol() : string

needParse : bool

p : protocolParser

protocol : string

protocolList : string[]

protocolParser

Interface

public

parseFirmware() : string

df1fullduplexParser

Class

public

df1fullduplexParser()

parseFirmware() : string

private

binCIPoutput : FileStream

binCIPwriter : BinaryWriter

CIPoutput : FileStream

CIPpacketHeaderFields : string[]

CIPpacketIndicator : byte

CIPpacketIndicatorLocation : int

CIPwriter : StreamWriter

fieldSizes : string[]

fwIndicator : byte

fwIndicatorLocation : int

fwOutput : FileStream

fwWriter : BinaryWriter

globalCIPPacketCount : int

globalPacketCount : int

goodFwFilePath : string

openStreamArray : LinkedList<Stream>

output : FileStream

parseData() : void

parsedFwFilePath : string

printCIPOutput() : void

printOutput() : void

reader : BinaryReader

startBytes : byte[]

stopBytes : byte[]

writer : StreamWriter

fieldedPacket

Static Class

public

printData() : string

printFirmwareData() : byte[]

private

getDataStartIndex() : int

bitCompare

Static Class

public

checkCaptureContainsFwBytes() : bool

compareFirmwareFiles() : bool

protocolParser

Figure C.6: Firmware Parse and Check Classes.

67

Appendix D: Tool Performing Test Cases

The following screenshots demonstrate use of the tool’s firmware verification routine.

Figure D.1: Tool function selection screen.

Figure D.2: Version 15 capture verification test.

68

Figure D.3: Version 16 capture verification test.

Figure D.4: Byte added to firmware verification test.

69

Figure D.5: Byte removed from firmware verification test.

Figure D.6: Byte added to protocol data verification test.

70

Figure D.7: Byte removed from protocol data verification test.

Figure D.8: Byte modified in firmware verification test.

71

Figure D.9: Byte modified in protocol data verification test.

72

Appendix E: Test Case Modifications

The following screenshots display firmware modification test case data.

Figure E.1: Version 15 firmware screenshot.

73

Figure E.2: Version 15 firmware screenshot.

Figure E.3: Version 15 capture screenshot.

74

Figure E.4: Version 16 capture screenshot.

Figure E.5: Byte added to firmware data.

75

Figure E.6: Byte removed from firmware data.

Figure E.7: Byte added to protocol data.

76

Figure E.8: Byte removed from protocol data.

Figure E.9: Byte modified in firmware data.

77

Figure E.10: Byte modified in protocol data.

78

Bibliography

[1] Stuart A. Boyer. SCADA: Supervisory Control and Data Acquisition. ISA, 3rd
edition, 06 2004.

[2] Department of Homeland Security. National infrastructure protection plan.
Technical report, Department of Homeland Security, 2009.

[3] IEEE. IEEE standard for substation intelligent electronic devices (IEDs) cyber
security capabilities, 2008.

[4] NIST Computer Security Division. Managing information security risk:
Organization, mission, and information system view. Special Publication 800-39,
National Institute of Standards and Technology, U.S. Department of Commerce,
2011.

[5] Keith Stouffer, Joe Falco, and Karen Kent. Guide to supervisory control and data
acquisition (SCADA) and industrial control systems security. Technical Report
NIST-SP-800-82-2006, National Institute of Standards, 2011.

[6] Nicolas Falliere, Liam Murchu, and Eric Chien. W32.stuxnet dossier. Technical
report, Symantec, 2011.

[7] William J. Lynn III. Defending a new doman: The pentagon’s cyberstrategy.
Council on Foreign Affairs, 2010.

[8] William T. Shaw. Cybersecurity for SCADA Systems. PennWell, Tulsa, OK, 2006.

[9] United States Government Accountability Office. Cybersecurity: Continued
attention needed to protect our nation’s critical infrastructure. Testimony
GAO-11-865T, 2011.

[10] US-CERT. Control systems - standards and references, 2011.

[11] W. Bolton. Programmable Logic Controllers. Newnes, Woburn, MA, 2nd edition,
2000.

[12] John Crisp. Introduction to microprocessors and microcontrollers. Amsterdam;
Elsevier/Newnes, 2004.

[13] Siemens. SIMATIC embedded automation S7 modular embedded controller.
Technical Report A5E01716600-03, Siemens AG, 2009.

[14] Rockwell Software. Flash firmware updates, 2011.

[15] Moses D. Schwartz, John Mulder, Jason Trent, and William D. Atkins. Control
system devices: Architectures and supply channels overview. Technical Report
SAND2010-5183, Sandia National Laboratories, 2010.

79

[16] G. Gilchrist. Secure authentication for DNP3. In Power and Energy Society General
Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008
IEEE, pages 1–3, 2008.

[17] O. Pal, S. Saiwan, P. Jain, Z. Saquib, and D. Patel. Cryptographic key management
for SCADA system: An architectural framework. In Advances in Computing,
Control, & Telecommunication Technologies, 2009. ACT ’09. International
Conference on, pages 169–174, 2009.

[18] C. Basile, S. Di Carlo, and A. Scionti. FPGA-based remote-code integrity
verification of programs in distributed embedded systems. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, PP(99):1–14,
2011.

[19] M. Jakobsson and K. A Johansson. Practical and secure software-based attestation.
In Lightweight Security & Privacy: Devices, Protocols and Applications (LightSec),
2011 Workshop on, pages 1–9, 2011.

[20] Kyungsub Song, Dongwon Seo, Haemin Park, Heejo Lee, and A. Perrig. Omap:
One-way memory attestation protocol for smart meters. In Parallel and Distributed
Processing with Applications Workshops (ISPAW), 2011 Ninth IEEE International
Symposium on, pages 111–118, 2011.

[21] T. Morris and K. Pavurapu. A retrofit network transaction data logger and intrusion
detection system for transmission and distribution substations. In Power and Energy
(PECon), 2010 IEEE International Conference on, pages 958–963, 2010.

[22] Nicolas Falliere. Exploring stuxnet’s PLC infection process, 2010.

[23] Siobhan Gorman, August Cole, and Yochi Dreazen. Computer spies breach
fighter-jet project. The Wall Street Journal, 2009.

[24] United States Government Accountability Office. Information security: Cyber
threats and vulnerabilities place federal systems at risk. Congressional Testimony
GAO-09-661T, 2009.

[25] Wei Gao, T. Morris, B. Reaves, and D. Richey. On SCADA control system
command and response injection and intrusion detection. In eCrime Researchers
Summit (eCrime), 2010, pages 1–9, 2010.

[26] Robert Turk. Cyber Incidents Involving Control Systems. US-CERT Control
Systems Security Center; Idaho Falls, ID, 2005.

[27] Microsystems Technology Office. Integrity and reliability of integrated circuits
(IRIS). Technical Report DARPA-BAA-10-33, DARPA, 2010.

80

[28] J. Stradley and D. Karraker. The electronic part supply chain and risks of counterfeit
parts in defense applications. Components and Packaging Technologies, IEEE
Transactions on, 29(3):703–705, 2006.

[29] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and Sujeet Shenoi. Attack
taxonomies for the modbus protocols. International Journal of Critical
Infrastructure Protection, 1(0):37–44, 12 2008.

[30] East S., Butts J., Papa M., and Shenoi S. A taxonomy of attacks on the DNP3
protocol. In C. Palmer & S. Shenoi, editor, Critical Infrastructure Protection III,
page 67, 2009.

[31] I. N. Fovino, A. Carcano, and M. Masera. A secure and survivable architecture for
SCADA systems. In Dependability, 2009. DEPEND ’09. Second International
Conference on, pages 34–39, 2009.

[32] T. Mander, F. Nabhani, Lin Wang, and R. Cheung. Data object based security for
DNP3 over tcp/ip for increased utility commercial aspects security. In Power
Engineering Society General Meeting, 2007. IEEE, pages 1–8, 2007.

[33] IEEE Power and Energy Society. IEEE standard for electric power systems
communications – distributed network protocol (DNP3), 2010.

[34] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography: with
Coding Theory. Pearson Prentice Hall; Upper Saddle River, NJ, 2006.

[35] Ronald L. Rivest. RFC 1321 - the MD5 message-digest algorithm. Technical
Report RFC 1321, IETF Tools, 1992.

[36] D. Dzung, M. Naedele, T. P. Von Hoff, and M. Crevatin. Security for industrial
communication systems. Proceedings of the IEEE, 93(6):1152–1177, 2005.

[37] T. Feller, S. Malipatlolla, D. Meister, and S. A. Huss. TinyTPM: A lightweight
module aimed to IP protection and trusted embedded platforms. In
Hardware-Oriented Security and Trust (HOST), 2011 IEEE International
Symposium on, pages 6–11, 2011.

[38] A. Khan, M. K. Sharma, G. Ganesh, S. D. Dhodapkar, B. B. Biswas, and R. K. Patil.
A cryptographic primitive based authentication scheme for run-time software of
embedded systems. In Reliability, Safety and Hazard (ICRESH), 2010 2nd
International Conference on, pages 500–504, 2010.

[39] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based
attestation for embedded devices. In Security and Privacy, 2004. Proceedings. 2004
IEEE Symposium on, pages 272–282, 2004.

[40] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. Security issues in
SCADA networks. Computers & Security, 25(7):498–506, 10 2006.

81

[41] T. AbuHmed, N. Nyamaa, and DaeHun Nyang. Software-based remote code
attestation in wireless sensor network. In Global Telecommunications Conference,
2009. GLOBECOM 2009. IEEE, pages 1–8, 2009.

[42] D. K. Nilsson, Lei Sun, and T. Nakajima. A framework for self-verification of
firmware updates over the air in vehicle ECUs. In GLOBECOM Workshops, 2008
IEEE, pages 1–5, 2008.

[43] Ce Meng, Yeping He, and Qian Zhang. Remote attestation for custom-built
software. In Networks Security, Wireless Communications and Trusted Computing,
2009. NSWCTC ’09. International Conference on, volume 2, pages 374–377, 2009.

[44] IEEE Power and Energy Society. IEEE recommended practice for
microprocessor-based protection equipment firmware control, 2006.

[45] Defense Industry Daily. Secure semiconductors: Sensible, or sisyphean?, 2011.

[46] Dean Collins. Darpa ”trust in IC’s” effort. Technical report, Microsystems
Technology Office, DARPA, 2007.

[47] F. E. McFadden and R. D. Arnold. Supply chain risk mitigation for it electronics. In
Technologies for Homeland Security (HST), 2010 IEEE International Conference on,
pages 49–55, 2010.

[48] S. Adee. The hunt for the kill switch. Spectrum, IEEE, 45(5):34–39, 2008.

[49] M. Tehranipoor, H. Salmani, Xuehui Zhang, Xiaoxiao Wang, R. Karri, J. Rajendran,
and K. Rosenfeld. Trustworthy hardware: Trojan detection and design-for-trust
challenges. Computer, 44(7):66–74, 2011.

[50] Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. Detecting malicious inclusions
in secure hardware: Challenges and solutions. In Hardware-Oriented Security and
Trust, 2008. HOST 2008. IEEE International Workshop on, pages 15–19, 2008.

[51] Department of Homeland Security. Strategy for securing control systems. Technical
report, US-CERT, 2009.

[52] North American Electric Reliability Corporation. Reliability standards.

[53] North American Electric Reliability Corporation. Cyber security - electronic
security perimeter. Technical Report CIP-005-4a, 2011.

[54] North American Electric Reliability Corporation. Cybersecurity - critical cyber
asset identification. Technical Report CIP-002-4, 2011.

[55] Noah Shachtman. Exclusive: Computer virus hits u.s. drone fleet. Danger Room,
Fri, 07 Oct 2011.

82

[56] Allen-Bradley. Df1 protocol and command set: Reference manual. Technical
Report 1770-6.5.16, Allen-Bradley, 1996.

[57] Dimitrios Hristu-Varsakelis and William S. Levine. Handbook of networked and
embedded control systems. 2005.

[58] Modicon. Modicon modbus protocol reference guide. Technical guide, MODICON,
Inc., Industrial Automation Systems, 1996.

[59] Mael Horz. HxD - freeware hex editor and disk editor, 2011.

83

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

Standard

	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Motivation
	Research Purpose and Goals
	Approach
	Research Contributions
	Assumptions and Limitations
	Organization

	Background
	SCADA System Overview
	Current SCADA Security Landscape
	Security Research
	Embedded Device Security
	Integrated Circuit Supply Chain Management
	Industrial Control System Security Recommendations
	Advanced Threat on SCADA Systems
	Background Summary

	Methodology
	Problem Definition
	Environment
	Evaluation Technique
	Methodology Summary

	Analysis and Results
	Tool Development
	Results
	Analysis
	Discussion on Limitations
	Analysis Summary

	Conclusions and Future Work
	Conclusions
	Impact
	Future Work
	Concluding Remarks

	Appendix A: Typical ControlFLASH Firmware Load Process
	Appendix B: Pseudocode
	Data Capture
	Protocol Analysis
	PLC Emulator
	Firmware Verifier

	Appendix C: Tool Class Diagrams
	Main Class and Helper Classes
	Passive Serial Capture Classes
	Serial Capture Analysis and Profile Creation Classes
	PLC Emulator Classes
	Captured Firmware Verification Classes
	Firmware Parse and Check Classes

	Appendix D: Tool Performing Test Cases
	Appendix E: Test Case Modifications
	Bibliography

